Anna LoPresti, Meghan T. Hayden, Katherine J. Siegel, B. Poulter, E. N. Stavros, L. Dee
{"title":"Remote sensing applications for prescribed burn research","authors":"Anna LoPresti, Meghan T. Hayden, Katherine J. Siegel, B. Poulter, E. N. Stavros, L. Dee","doi":"10.1071/wf23130","DOIUrl":null,"url":null,"abstract":"Prescribed burning is a key management strategy within fire-adapted systems, and improved monitoring approaches are needed to evaluate its effectiveness in achieving social-ecological outcomes. Remote sensing provides opportunities to analyse the impacts of prescribed burning, yet a comprehensive understanding of the applications of remote sensing for prescribed burn research is lacking. We conduct a literature review of 120 peer-reviewed publications to synthesise the research aims, methodologies, limitations and future directions of remote sensing for the analysis of prescribed fire. Studies evaluating management outcomes found prescribed burning effective for wildfire risk reduction, yet few analysed co-benefits or trade-offs with other management goals. Most studies use passive, spaceborne, low spatial resolution sensors, characterised in the literature as consistent and accessible data sources but limited in detecting small, low-severity and short-duration fires characteristic of prescribed burns. In contrast, active remote sensing approaches including LiDAR are less frequently employed, but show promise for highly accurate, spatially explicit 3D vegetation and fuel load mapping. Remote sensing advances toward higher spatial resolution, more frequent revisit, denser spectral sampling and more data across the electromagnetic spectrum are critical to advancing prescribed fire research, addressing current methodological gaps, and improving fuels and fire management capacity.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wildland Fire","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/wf23130","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Prescribed burning is a key management strategy within fire-adapted systems, and improved monitoring approaches are needed to evaluate its effectiveness in achieving social-ecological outcomes. Remote sensing provides opportunities to analyse the impacts of prescribed burning, yet a comprehensive understanding of the applications of remote sensing for prescribed burn research is lacking. We conduct a literature review of 120 peer-reviewed publications to synthesise the research aims, methodologies, limitations and future directions of remote sensing for the analysis of prescribed fire. Studies evaluating management outcomes found prescribed burning effective for wildfire risk reduction, yet few analysed co-benefits or trade-offs with other management goals. Most studies use passive, spaceborne, low spatial resolution sensors, characterised in the literature as consistent and accessible data sources but limited in detecting small, low-severity and short-duration fires characteristic of prescribed burns. In contrast, active remote sensing approaches including LiDAR are less frequently employed, but show promise for highly accurate, spatially explicit 3D vegetation and fuel load mapping. Remote sensing advances toward higher spatial resolution, more frequent revisit, denser spectral sampling and more data across the electromagnetic spectrum are critical to advancing prescribed fire research, addressing current methodological gaps, and improving fuels and fire management capacity.
期刊介绍:
International Journal of Wildland Fire publishes new and significant articles that advance basic and applied research concerning wildland fire. Published papers aim to assist in the understanding of the basic principles of fire as a process, its ecological impact at the stand level and the landscape level, modelling fire and its effects, as well as presenting information on how to effectively and efficiently manage fire. The journal has an international perspective, since wildland fire plays a major social, economic and ecological role around the globe.
The International Journal of Wildland Fire is published on behalf of the International Association of Wildland Fire.