Spyridon Chaskis, Stavroula Maritsa, Paul Stavroulakis, S. Papadopoulou, Russell Goodall, S. Papaefthymiou
{"title":"Compositional Design and Thermal Processing of a Novel Lead-Free Cu–Zn–Al–Sn Medium Entropy Brass Alloy","authors":"Spyridon Chaskis, Stavroula Maritsa, Paul Stavroulakis, S. Papadopoulou, Russell Goodall, S. Papaefthymiou","doi":"10.3390/met14060620","DOIUrl":null,"url":null,"abstract":"In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14060620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.