R dot approach for kinetic modelling of WGS over noble metals

IF 1.6 4区 工程技术 Q3 Chemical Engineering
Ravikiran Mandapaka
{"title":"R dot approach for kinetic modelling of WGS over noble metals","authors":"Ravikiran Mandapaka","doi":"10.1515/ijcre-2023-0231","DOIUrl":null,"url":null,"abstract":"\n Water Gas shift reaction (WGS) kinetics are prominent in reactions involving hydrocarbons. Often the rate expressions developed for WGS have narrow application for wider experimental conditions. On the other hand, DFT based microkinetic models developed for WGS can predict the experimental trend, however, developing rate expressions for the same can be difficult owing to the validity of different approximations and assumptions. In this context, R dot approach has been used in this study to develop rate expressions for WGS over Pt, Rh. Using this approach, the rate determining steps of the mechanisms proposed, validation with experimental data and most abundant reaction intermediate (MARI) analysis was carried out. Based on the interpreted results it has been seen that the R dot approach was able to predict the experimental trend to good degree of accuracy in line with the predictions of quasi steady state (QSS) approach.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"9 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0231","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Water Gas shift reaction (WGS) kinetics are prominent in reactions involving hydrocarbons. Often the rate expressions developed for WGS have narrow application for wider experimental conditions. On the other hand, DFT based microkinetic models developed for WGS can predict the experimental trend, however, developing rate expressions for the same can be difficult owing to the validity of different approximations and assumptions. In this context, R dot approach has been used in this study to develop rate expressions for WGS over Pt, Rh. Using this approach, the rate determining steps of the mechanisms proposed, validation with experimental data and most abundant reaction intermediate (MARI) analysis was carried out. Based on the interpreted results it has been seen that the R dot approach was able to predict the experimental trend to good degree of accuracy in line with the predictions of quasi steady state (QSS) approach.
用 R dot 方法建立贵金属上 WGS 的动力学模型
水气移反应(WGS)动力学在涉及碳氢化合物的反应中非常突出。通常情况下,为 WGS 开发的速率表达式在更广泛的实验条件下应用范围较窄。另一方面,为 WGS 开发的基于 DFT 的微动力学模型可以预测实验趋势,但由于不同近似值和假设的有效性不同,为其开发速率表达式可能比较困难。在这种情况下,本研究采用了 R dot 方法来开发 WGS 在 Pt、Rh 上的速率表达式。利用这种方法,对所提出的机理的速率决定步骤、实验数据和最丰富反应中间体(MARI)分析进行了验证。根据所解释的结果可以看出,R dot 方法能够很准确地预测实验趋势,与准稳态(QSS)方法的预测结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信