Ad Optimization Via Machine Learning: A Focus on Upper Confidence Bound and Thompson Sampling Algorithms

Ananya Kaul, Priyam Aneja, Sarthak Tomar, Dr Abdul Rahman
{"title":"Ad Optimization Via Machine Learning: A Focus on Upper Confidence Bound and Thompson Sampling Algorithms","authors":"Ananya Kaul, Priyam Aneja, Sarthak Tomar, Dr Abdul Rahman","doi":"10.47392/irjaeh.2024.0209","DOIUrl":null,"url":null,"abstract":"The objective of this project is to improve the effectiveness and efficiency of advertising on various platforms by utilizing advanced algorithms, namely the Upper Confidence Bound and Thompson Sampling Algorithm. The project aims to find a balance between exploring new advertising strategies and exploiting proven high-performing approaches. By implementing these bandit algorithms, the project aims to dynamically optimize ad placements, formats, and targeting to maximize user engagement and ad revenue. The methodology involves an iterative process of data collection, analysis, and adaptation. The initial phases include defining project objectives, understanding the target audience, and reviewing the current ad strategy. The Upper Confidence Bound algorithm enables intelligent decision-making by assigning confidence bounds to different ad strategies, allowing for efficient exploration and exploitation. On the other hand, the Thompson Sampling algorithm, rooted in Bayesian principles, dynamically adapts based on observed outcomes, striking a balance between exploration and exploitation through probabilistic reasoning. In summary, this Ads Optimization Project utilizes the power of the Upper Confidence Bound and Thompson Sampling algorithms to create a data-driven, adaptive, and user-centric approach to advertising. The ultimate goal is to achieve optimal user engagement and ad revenue.","PeriodicalId":517766,"journal":{"name":"International Research Journal on Advanced Engineering Hub (IRJAEH)","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering Hub (IRJAEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaeh.2024.0209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this project is to improve the effectiveness and efficiency of advertising on various platforms by utilizing advanced algorithms, namely the Upper Confidence Bound and Thompson Sampling Algorithm. The project aims to find a balance between exploring new advertising strategies and exploiting proven high-performing approaches. By implementing these bandit algorithms, the project aims to dynamically optimize ad placements, formats, and targeting to maximize user engagement and ad revenue. The methodology involves an iterative process of data collection, analysis, and adaptation. The initial phases include defining project objectives, understanding the target audience, and reviewing the current ad strategy. The Upper Confidence Bound algorithm enables intelligent decision-making by assigning confidence bounds to different ad strategies, allowing for efficient exploration and exploitation. On the other hand, the Thompson Sampling algorithm, rooted in Bayesian principles, dynamically adapts based on observed outcomes, striking a balance between exploration and exploitation through probabilistic reasoning. In summary, this Ads Optimization Project utilizes the power of the Upper Confidence Bound and Thompson Sampling algorithms to create a data-driven, adaptive, and user-centric approach to advertising. The ultimate goal is to achieve optimal user engagement and ad revenue.
通过机器学习优化广告:聚焦置信度上限和汤普森采样算法
该项目的目标是利用先进的算法,即置信度上限算法和汤普森采样算法,提高各种平台上广告的效果和效率。该项目的目标是在探索新的广告策略和利用成熟的高效方法之间找到平衡。通过实施这些强盗算法,该项目旨在动态优化广告投放、格式和定位,以最大限度地提高用户参与度和广告收入。该方法涉及数据收集、分析和调整的迭代过程。初始阶段包括确定项目目标、了解目标受众和审查当前的广告策略。置信度上限算法通过为不同的广告策略分配置信度上限来实现智能决策,从而实现高效的探索和利用。另一方面,根植于贝叶斯原理的汤普森采样算法可根据观察到的结果进行动态调整,通过概率推理在探索和利用之间取得平衡。总之,本广告优化项目利用置信度上限算法和汤普森采样算法的力量,创建了一种数据驱动、自适应和以用户为中心的广告方法。最终目标是实现最佳的用户参与度和广告收入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信