{"title":"Enhancing Logistics Optimization","authors":"Lei Wang, G. Liu, Habib Hamam","doi":"10.4018/joeuc.344039","DOIUrl":null,"url":null,"abstract":"With the expansion of the logistics network, enterprise logistics distribution faces increasing challenges, including high transportation costs, low distribution efficiency, and unstable distribution networks. To address these issues, this study focuses on optimizing enterprise logistics distribution using a double-layer (DL) model. In this paper, we propose a DL model for optimizing enterprise logistics distribution. The DL model is designed to find the optimal solution using the particle swarm optimization (PSO) algorithm. By leveraging location data from the region, the DL model evaluates and compares alternative distribution centers to determine the most efficient distribution strategy. The results demonstrate that the DL site selection model developed in this study effectively addresses the tasks of logistics center location and distribution optimization among alternative distribution centers. Comparison tests reveal that the distribution path proposed by the DL model is more accessible and cost-effective compared to alternative approaches.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"12 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.344039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the expansion of the logistics network, enterprise logistics distribution faces increasing challenges, including high transportation costs, low distribution efficiency, and unstable distribution networks. To address these issues, this study focuses on optimizing enterprise logistics distribution using a double-layer (DL) model. In this paper, we propose a DL model for optimizing enterprise logistics distribution. The DL model is designed to find the optimal solution using the particle swarm optimization (PSO) algorithm. By leveraging location data from the region, the DL model evaluates and compares alternative distribution centers to determine the most efficient distribution strategy. The results demonstrate that the DL site selection model developed in this study effectively addresses the tasks of logistics center location and distribution optimization among alternative distribution centers. Comparison tests reveal that the distribution path proposed by the DL model is more accessible and cost-effective compared to alternative approaches.