Ailin Deng, Qiqi Ma, Yunxiang Hu, Xin Zhang, S. Yang, Nianhua Song, Wuji Sun, Xuejun Liu, Jianbing Ji
{"title":"Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor","authors":"Ailin Deng, Qiqi Ma, Yunxiang Hu, Xin Zhang, S. Yang, Nianhua Song, Wuji Sun, Xuejun Liu, Jianbing Ji","doi":"10.1515/ijcre-2023-0222","DOIUrl":null,"url":null,"abstract":"\n Tributyl aconitate is a new type of alternative plasticizer to phthalates. Amberlyst-15 was used to catalyze the esterification of aconitic acid and n-butanol for the preparation of tributyl aconitate in a cyclic fixed-bed reactor. The influence of the reaction conditions on the conversion was investigated. The results showed that the conversion of aconitic acid increased significantly with the rise of temperature and catalyst loading. The reaction conditions were optimized as: temperature: 115 °C; initial mass ratio of AA and n-butanol: 1:4; catalyst loading: 25 %; reaction absolute pressure: 85 kPa; volume flow rate: 30 mL min−1. Thermodynamics and kinetics of the reaction was studied. The non-ideality of the reaction system was rectified using the UNIFAC group contribution method. The kinetic process was simulated using the pseudo-homogeneous (PH) model, Eley-Rideal (E-R) model, and Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. The results revealed that the E-R model exhibited superior suitability in simulating the kinetic process.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"46 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Tributyl aconitate is a new type of alternative plasticizer to phthalates. Amberlyst-15 was used to catalyze the esterification of aconitic acid and n-butanol for the preparation of tributyl aconitate in a cyclic fixed-bed reactor. The influence of the reaction conditions on the conversion was investigated. The results showed that the conversion of aconitic acid increased significantly with the rise of temperature and catalyst loading. The reaction conditions were optimized as: temperature: 115 °C; initial mass ratio of AA and n-butanol: 1:4; catalyst loading: 25 %; reaction absolute pressure: 85 kPa; volume flow rate: 30 mL min−1. Thermodynamics and kinetics of the reaction was studied. The non-ideality of the reaction system was rectified using the UNIFAC group contribution method. The kinetic process was simulated using the pseudo-homogeneous (PH) model, Eley-Rideal (E-R) model, and Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. The results revealed that the E-R model exhibited superior suitability in simulating the kinetic process.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.