Prediction of Thyroid Classes Using Feature Selection of AEHOA Based CNN Model for Healthy Lifestyle

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Rachappa Jopate, Piyush Kumar Pareek, DivyaJyothi M. G, Ariam Saleh Zuwayid Juma Al Hasani
{"title":"Prediction of Thyroid Classes Using Feature Selection of AEHOA Based CNN Model for Healthy Lifestyle","authors":"Rachappa Jopate, Piyush Kumar Pareek, DivyaJyothi M. G, Ariam Saleh Zuwayid Juma Al Hasani","doi":"10.21123/bsj.2024.10547","DOIUrl":null,"url":null,"abstract":"كثيرًا ما يعاني الأشخاص الذين يعانون من قصور الغدة الدرقية من أعراض حادة. يؤدي التصنيف الصحيح والتعلم الآلي إلى تحسين تشخيص أمراض الغدة الدرقية بشكل كبير. سيؤثر هذا التصنيف الدقيق على تقديم الرعاية للمرضى في الوقت المناسب. على الرغم من وجود تقنيات التشخيص، فإنها تسعى في كثير من الأحيان إلى التصنيف الثنائي، وتستخدم مجموعات بيانات كبيرة غير كافية، وتفتقر إلى تأكيد استنتاجاتها. تركز الأساليب الحالية على تحسين النموذج، في حين يتم إهمال هندسة الميزات. يقدم هذا البحث نموذج خوارزمية تحسين قطيع الفيل التكيفي   AEHOA  لاختيار السمات المثالية من أجل التحايل على هذه القيود. في البداية، استخدم طريقة تسمى تقنية الإفراط في أخذ العينات للأقلية الاصطناعية  SMOTE  لتسوية البيانات. وأخيرًا، يتم إدخال معلمات نموذج AEHOA في الشبكة العصبية التلافيفية  CNN  لتصنيف البيانات وتعزيز التنبؤ. تمت أيضًا زيادة دقة تنبؤات التصنيف عن طريق تعديل مجموعة البيانات. تم إخضاع مجموعتي البيانات لعملية تصنيف لإجراء مقارنة أكثر دقة للنتائج.","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2024.10547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

كثيرًا ما يعاني الأشخاص الذين يعانون من قصور الغدة الدرقية من أعراض حادة. يؤدي التصنيف الصحيح والتعلم الآلي إلى تحسين تشخيص أمراض الغدة الدرقية بشكل كبير. سيؤثر هذا التصنيف الدقيق على تقديم الرعاية للمرضى في الوقت المناسب. على الرغم من وجود تقنيات التشخيص، فإنها تسعى في كثير من الأحيان إلى التصنيف الثنائي، وتستخدم مجموعات بيانات كبيرة غير كافية، وتفتقر إلى تأكيد استنتاجاتها. تركز الأساليب الحالية على تحسين النموذج، في حين يتم إهمال هندسة الميزات. يقدم هذا البحث نموذج خوارزمية تحسين قطيع الفيل التكيفي   AEHOA  لاختيار السمات المثالية من أجل التحايل على هذه القيود. في البداية، استخدم طريقة تسمى تقنية الإفراط في أخذ العينات للأقلية الاصطناعية  SMOTE  لتسوية البيانات. وأخيرًا، يتم إدخال معلمات نموذج AEHOA في الشبكة العصبية التلافيفية  CNN  لتصنيف البيانات وتعزيز التنبؤ. تمت أيضًا زيادة دقة تنبؤات التصنيف عن طريق تعديل مجموعة البيانات. تم إخضاع مجموعتي البيانات لعملية تصنيف لإجراء مقارنة أكثر دقة للنتائج.
利用基于 AEHOA 的 CNN 模型的特征选择预测甲状腺等级,促进健康生活方式
甲状腺功能减退症患者通常会出现严重症状。正确的分类和机器学习大大提高了甲状腺疾病的诊断率。这种准确的分类将影响对患者的及时治疗。虽然诊断技术已经存在,但它们往往寻求二元分类,使用的数据集不够大,而且缺乏对结论的确认。现有方法侧重于模型优化,而忽略了特征工程。本文提出了一种用于优化特征选择的自适应象群优化算法(AEHOA)模型,以规避这些局限性。首先,使用一种称为人工少数群体超采样技术(SMOTE)的方法对数据进行归一化处理。最后,将 AEHOA 模型的参数输入 CNN 卷积神经网络,对数据进行分类并增强预测。通过修改数据集也提高了分类预测的准确性。为了更准确地比较结果,对两个数据集进行了分类处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Baghdad Science Journal
Baghdad Science Journal MULTIDISCIPLINARY SCIENCES-
CiteScore
2.00
自引率
50.00%
发文量
102
审稿时长
24 weeks
期刊介绍: The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信