Simultaneous fermentation and enzymatic biocatalysis—a useful process option?

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Katharina Oehlenschläger, Emily Schepp, Judith Stiefelmaier, Dirk Holtmann, Roland Ulber
{"title":"Simultaneous fermentation and enzymatic biocatalysis—a useful process option?","authors":"Katharina Oehlenschläger,&nbsp;Emily Schepp,&nbsp;Judith Stiefelmaier,&nbsp;Dirk Holtmann,&nbsp;Roland Ulber","doi":"10.1186/s13068-024-02519-z","DOIUrl":null,"url":null,"abstract":"<div><p>Biotransformation with enzymes and de novo syntheses with whole-cell biocatalysts each have specific advantages. These can be combined to achieve processes with optimal performance. A recent approach is to perform bioconversion processes and enzymatic catalysis simultaneously in one-pot. This is a well-established process in the biorefinery, where starchy or cellulosic material is degraded enzymatically and simultaneously used as substrate for microbial cultivations. This procedure leads to a number of advantages like saving in time but also in the needed equipment (e.g., reaction vessels). In addition, the inhibition or side-reaction of high sugar concentrations can be overcome by combining the processes. These benefits of coupling microbial conversion and enzymatic biotransformation can also be transferred to other processes for example in the sector of biofuel production or in the food industry. However, finding a compromise between the different requirements of the two processes is challenging in some cases. This article summarises the latest developments and process variations.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02519-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02519-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biotransformation with enzymes and de novo syntheses with whole-cell biocatalysts each have specific advantages. These can be combined to achieve processes with optimal performance. A recent approach is to perform bioconversion processes and enzymatic catalysis simultaneously in one-pot. This is a well-established process in the biorefinery, where starchy or cellulosic material is degraded enzymatically and simultaneously used as substrate for microbial cultivations. This procedure leads to a number of advantages like saving in time but also in the needed equipment (e.g., reaction vessels). In addition, the inhibition or side-reaction of high sugar concentrations can be overcome by combining the processes. These benefits of coupling microbial conversion and enzymatic biotransformation can also be transferred to other processes for example in the sector of biofuel production or in the food industry. However, finding a compromise between the different requirements of the two processes is challenging in some cases. This article summarises the latest developments and process variations.

Graphical Abstract

同时发酵和酶生物催化--一种有用的工艺选择?
利用酶进行生物转化和利用全细胞生物催化剂进行从头合成各有其独特的优势。这些优势可以结合起来,以实现具有最佳性能的工艺。最近的一种方法是在一锅中同时进行生物转化过程和酶催化。这是生物精炼中一种成熟的工艺,即对淀粉或纤维素材料进行酶促降解,同时将其作为微生物培养的底物。这种工艺有许多优点,如节省时间和所需设备(如反应容器)。此外,将这两个过程结合起来,还能克服高浓度糖分的抑制或副反应。将微生物转化和酶法生物转化结合起来的这些优势也可以应用到其他工艺中,例如生物燃料生产或食品工业。然而,在某些情况下,要在两种工艺的不同要求之间找到一个折中点是很有挑战性的。本文总结了最新的发展和工艺变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信