A Mamdani fuzzy inference system with trapezoidal membership functions for investigating fishery production

Kanisha Pujaru , Sayani Adak , T.K. Kar , Sova Patra , Soovoojeet Jana
{"title":"A Mamdani fuzzy inference system with trapezoidal membership functions for investigating fishery production","authors":"Kanisha Pujaru ,&nbsp;Sayani Adak ,&nbsp;T.K. Kar ,&nbsp;Sova Patra ,&nbsp;Soovoojeet Jana","doi":"10.1016/j.dajour.2024.100481","DOIUrl":null,"url":null,"abstract":"<div><p>Seas, marine ecosystems, and coastal regions are crucial components of our environment. Numerous scientific strategies have been adopted to boost fisheries and aquaculture productivity. This study proposes a fuzzy-logic-based model to produce fisheries in India, which ranks fourth worldwide for fisheries production. Five input variables, such as fish seed, export, post-harvesting, released fund, and temperature, are considered inputs, and the production of fisheries is taken as the output variable. A Mamdani-type fuzzy inference system with trapezoidal membership functions is prepared with 243 rules in the IF-THEN format. This mathematical model investigates the impacts of input parameters on the production of Indian fisheries. We fit the model with the real-world data and show that fish seed, export, released fund, and post-harvesting facilities positively impact fisheries production. However, a very high temperature is unsuitable for high production, even if all other parameters lie at their desired level.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"11 ","pages":"Article 100481"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772662224000857/pdfft?md5=f6fc9505e0ef1af7e8473e41b98f7d0a&pid=1-s2.0-S2772662224000857-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662224000857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seas, marine ecosystems, and coastal regions are crucial components of our environment. Numerous scientific strategies have been adopted to boost fisheries and aquaculture productivity. This study proposes a fuzzy-logic-based model to produce fisheries in India, which ranks fourth worldwide for fisheries production. Five input variables, such as fish seed, export, post-harvesting, released fund, and temperature, are considered inputs, and the production of fisheries is taken as the output variable. A Mamdani-type fuzzy inference system with trapezoidal membership functions is prepared with 243 rules in the IF-THEN format. This mathematical model investigates the impacts of input parameters on the production of Indian fisheries. We fit the model with the real-world data and show that fish seed, export, released fund, and post-harvesting facilities positively impact fisheries production. However, a very high temperature is unsuitable for high production, even if all other parameters lie at their desired level.

用于调查渔业生产的梯形成员函数马姆达尼模糊推理系统
海洋、海洋生态系统和沿海地区是我们环境的重要组成部分。为了提高渔业和水产养殖业的生产力,人们采取了许多科学策略。印度的渔业产量在全球排名第四,本研究提出了一个基于模糊逻辑的印度渔业生产模型。鱼种、出口、捕捞后、放流基金和温度等五个输入变量被视为输入变量,渔业产量被视为输出变量。编制了一个具有梯形成员函数的 Mamdani 型模糊推理系统,其中有 243 条 IF-THEN 格式的规则。该数学模型研究了输入参数对印度渔业产量的影响。我们将模型与现实世界的数据进行了拟合,结果表明鱼种、出口、放流资金和捕捞后设施对渔业生产有积极影响。然而,即使所有其他参数都处于理想水平,极高的温度也不适合高产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信