Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist.

IF 3 4区 医学 Q2 NEUROSCIENCES
Purinergic Signalling Pub Date : 2024-12-01 Epub Date: 2024-05-25 DOI:10.1007/s11302-024-10005-2
Jessica Nagel, Olli Törmäkangas, Katja Kuokkanen, Ali El-Tayeb, Josef Messinger, Aliaa Abdelrahman, Christiane Bous, Anke C Schiedel, Christa E Müller
{"title":"Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist.","authors":"Jessica Nagel, Olli Törmäkangas, Katja Kuokkanen, Ali El-Tayeb, Josef Messinger, Aliaa Abdelrahman, Christiane Bous, Anke C Schiedel, Christa E Müller","doi":"10.1007/s11302-024-10005-2","DOIUrl":null,"url":null,"abstract":"<p><p>P2X4 receptors are ATP-gated cation channels that were proposed as novel drug targets due to their role in inflammation and neuropathic pain. Only few potent and selective P2X4 receptor antagonists have been described to date. Labeled tool compounds suitable for P2X4 receptor binding studies are lacking. Here, we present a novel allosteric P2X4 receptor antagonist possessing high potency in the low nanomolar range. We describe its tritium-labeling resulting in the P2X4-selective radiotracer [<sup>3</sup>H]PSB-OR-2020 with high specific activity (45 Ci/mmol; 1.67 TBq/mmol). A radioligand binding assay was developed using human embryonic kidney (HEK293) cell membranes recombinantly expressing the human P2X4 receptor. Competition binding studies with structurally diverse P2X4 receptor antagonists revealed different allosteric binding sites indicating that the new class of P2X4 receptor antagonists, to which PSB-OR-2020 belongs, interacts with an unprecedented allosteric site. [<sup>3</sup>H]PSB-OR-2020 may become a useful tool for research on P2X4 receptors and for promoting drug development.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"645-656"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-024-10005-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

P2X4 receptors are ATP-gated cation channels that were proposed as novel drug targets due to their role in inflammation and neuropathic pain. Only few potent and selective P2X4 receptor antagonists have been described to date. Labeled tool compounds suitable for P2X4 receptor binding studies are lacking. Here, we present a novel allosteric P2X4 receptor antagonist possessing high potency in the low nanomolar range. We describe its tritium-labeling resulting in the P2X4-selective radiotracer [3H]PSB-OR-2020 with high specific activity (45 Ci/mmol; 1.67 TBq/mmol). A radioligand binding assay was developed using human embryonic kidney (HEK293) cell membranes recombinantly expressing the human P2X4 receptor. Competition binding studies with structurally diverse P2X4 receptor antagonists revealed different allosteric binding sites indicating that the new class of P2X4 receptor antagonists, to which PSB-OR-2020 belongs, interacts with an unprecedented allosteric site. [3H]PSB-OR-2020 may become a useful tool for research on P2X4 receptors and for promoting drug development.

Abstract Image

制备和初步评估氚标记的异源 P2X4 受体拮抗剂。
P2X4 受体是 ATP 门控阳离子通道,因其在炎症和神经性疼痛中的作用而被提出作为新型药物靶点。迄今为止,只有少数强效和选择性的 P2X4 受体拮抗剂被描述过。目前还缺乏适合于 P2X4 受体结合研究的标记工具化合物。在这里,我们介绍了一种新型异位 P2X4 受体拮抗剂,它在低纳摩尔范围内具有很高的效力。我们描述了对其进行氚标记后得到的 P2X4 选择性放射性示踪剂 [3H]PSB-OR-2020,它具有很高的特异性活性(45 Ci/mmol;1.67 TBq/mmol)。利用重组表达人类 P2X4 受体的人类胚胎肾脏(HEK293)细胞膜开发了一种放射性配体结合试验。与结构不同的 P2X4 受体拮抗剂的竞争结合研究发现了不同的异构结合位点,表明 PSB-OR-2020 所属的新型 P2X4 受体拮抗剂与一个前所未有的异构位点相互作用。[3H]PSB-OR-2020可能成为研究P2X4受体和促进药物开发的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信