On Bernoulli’s Method

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Tamás Dózsa, Ferenc Schipp, Alexandros Soumelidis
{"title":"On Bernoulli’s Method","authors":"Tamás Dózsa, Ferenc Schipp, Alexandros Soumelidis","doi":"10.1137/22m1528501","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1259-1277, June 2024. <br/> Abstract. We generalize Bernoulli’s classical method for finding poles of rational functions using the rational orthogonal Malmquist–Takenaka system. We show that our approach overcomes the limitations of previous methods, especially their dependence on the existence of a so-called dominant pole, while significantly simplifying the required calculations. A description of the identifiable poles is provided, as well as an iterative algorithm that can be applied to find every pole of a rational function. We discuss automatic parameter choice for the proposed algorithm and demonstrate its effectiveness through numerical examples.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"48 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1528501","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1259-1277, June 2024.
Abstract. We generalize Bernoulli’s classical method for finding poles of rational functions using the rational orthogonal Malmquist–Takenaka system. We show that our approach overcomes the limitations of previous methods, especially their dependence on the existence of a so-called dominant pole, while significantly simplifying the required calculations. A description of the identifiable poles is provided, as well as an iterative algorithm that can be applied to find every pole of a rational function. We discuss automatic parameter choice for the proposed algorithm and demonstrate its effectiveness through numerical examples.
关于伯努利方法
SIAM 数值分析期刊》第 62 卷第 3 期第 1259-1277 页,2024 年 6 月。 摘要。我们利用有理正交 Malmquist-Takenaka 系统概括了伯努利寻找有理函数极点的经典方法。我们的研究表明,我们的方法克服了以前方法的局限性,特别是它们对所谓的主导极点存在的依赖性,同时大大简化了所需的计算。我们对可识别极点进行了描述,并提供了一种可用于找到有理函数每个极点的迭代算法。我们讨论了拟议算法的自动参数选择,并通过数值示例证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信