Learning Algorithm Generalization Error Bounds via Auxiliary Distributions

Gholamali Aminian;Saeed Masiha;Laura Toni;Miguel R. D. Rodrigues
{"title":"Learning Algorithm Generalization Error Bounds via Auxiliary Distributions","authors":"Gholamali Aminian;Saeed Masiha;Laura Toni;Miguel R. D. Rodrigues","doi":"10.1109/JSAIT.2024.3391900","DOIUrl":null,"url":null,"abstract":"Generalization error bounds are essential for comprehending how well machine learning models work. In this work, we suggest a novel method, i.e., the Auxiliary Distribution Method, that leads to new upper bounds on expected generalization errors that are appropriate for supervised learning scenarios. We show that our general upper bounds can be specialized under some conditions to new bounds involving the \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Jensen-Shannon, \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Rényi \n<inline-formula> <tex-math>$(0\\lt \\alpha \\lt 1)$ </tex-math></inline-formula>\n information between a random variable modeling the set of training samples and another random variable modeling the set of hypotheses. Our upper bounds based on \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Jensen-Shannon information are also finite. Additionally, we demonstrate how our auxiliary distribution method can be used to derive the upper bounds on excess risk of some learning algorithms in the supervised learning context and the generalization error under the distribution mismatch scenario in supervised learning algorithms, where the distribution mismatch is modeled as \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Jensen-Shannon or \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Rényi divergence between the distribution of test and training data samples distributions. We also outline the conditions for which our proposed upper bounds might be tighter than other earlier upper bounds.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"273-284"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508532/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generalization error bounds are essential for comprehending how well machine learning models work. In this work, we suggest a novel method, i.e., the Auxiliary Distribution Method, that leads to new upper bounds on expected generalization errors that are appropriate for supervised learning scenarios. We show that our general upper bounds can be specialized under some conditions to new bounds involving the $\alpha $ -Jensen-Shannon, $\alpha $ -Rényi $(0\lt \alpha \lt 1)$ information between a random variable modeling the set of training samples and another random variable modeling the set of hypotheses. Our upper bounds based on $\alpha $ -Jensen-Shannon information are also finite. Additionally, we demonstrate how our auxiliary distribution method can be used to derive the upper bounds on excess risk of some learning algorithms in the supervised learning context and the generalization error under the distribution mismatch scenario in supervised learning algorithms, where the distribution mismatch is modeled as $\alpha $ -Jensen-Shannon or $\alpha $ -Rényi divergence between the distribution of test and training data samples distributions. We also outline the conditions for which our proposed upper bounds might be tighter than other earlier upper bounds.
通过辅助分布实现学习算法泛化误差边界
泛化误差边界对于理解机器学习模型的工作原理至关重要。在这项工作中,我们提出了一种新方法(即辅助分布法),它能为监督学习场景带来新的预期泛化误差上界。我们证明,在某些条件下,我们的一般上界可以专门化为涉及训练样本集建模的随机变量和假设集建模的另一个随机变量之间的 $\alpha $ -Jensen-Shannon, $\alpha $ -Rényi $(0\lt \alpha \lt 1)$ 信息的新上界。我们基于 $\alpha $ -Jensen-Shannon 信息的上限也是有限的。此外,我们还演示了我们的辅助分布方法如何用于推导监督学习背景下某些学习算法的超额风险上限,以及监督学习算法中分布不匹配情况下的泛化误差,其中分布不匹配被建模为测试数据样本分布与训练数据样本分布之间的 $\alpha $ -Jensen-Shannon 或 $\alpha $ -Rényi 分歧。我们还概述了我们提出的上界可能比其他早期上界更严格的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信