{"title":"Genetic Programming for Feature Selection Based on Feature Removal Impact in High-Dimensional Symbolic Regression","authors":"Baligh Al-Helali;Qi Chen;Bing Xue;Mengjie Zhang","doi":"10.1109/TETCI.2024.3369407","DOIUrl":null,"url":null,"abstract":"Symbolic regression is increasingly important for discovering mathematical models for various prediction tasks. It works by searching for the arithmetic expressions that best represent a target variable using a set of input features. However, as the number of features increases, the search process becomes more complex. To address high-dimensional symbolic regression, this work proposes a genetic programming for feature selection method based on the impact of feature removal on the performance of SR models. Unlike existing Shapely value methods that simulate feature absence at the data level, the proposed approach suggests removing features at the model level. This approach circumvents the production of unrealistic data instances, which is a major limitation of Shapely value and permutation-based methods. Moreover, after calculating the importance of the features, a cut-off strategy, which works by injecting a number of random features and utilising their importance to automatically set a threshold, is proposed for selecting important features. The experimental results on artificial and real-world high-dimensional data sets show that, compared with state-of-the-art feature selection methods using the permutation importance and Shapely value, the proposed method not only improves the SR accuracy but also selects smaller sets of features.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 3","pages":"2269-2282"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10466603/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Symbolic regression is increasingly important for discovering mathematical models for various prediction tasks. It works by searching for the arithmetic expressions that best represent a target variable using a set of input features. However, as the number of features increases, the search process becomes more complex. To address high-dimensional symbolic regression, this work proposes a genetic programming for feature selection method based on the impact of feature removal on the performance of SR models. Unlike existing Shapely value methods that simulate feature absence at the data level, the proposed approach suggests removing features at the model level. This approach circumvents the production of unrealistic data instances, which is a major limitation of Shapely value and permutation-based methods. Moreover, after calculating the importance of the features, a cut-off strategy, which works by injecting a number of random features and utilising their importance to automatically set a threshold, is proposed for selecting important features. The experimental results on artificial and real-world high-dimensional data sets show that, compared with state-of-the-art feature selection methods using the permutation importance and Shapely value, the proposed method not only improves the SR accuracy but also selects smaller sets of features.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.