{"title":"PAX8-AS1/microRNA-25–3p/LATS2 regulates malignant progression of ovarian cancer via Hippo signaling","authors":"Gang Liu, Jing Tian","doi":"10.1016/j.mrfmmm.2024.111858","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ovarian cancer (OC) is a frequent malignancy of the female reproductive system. Recently, the aberrant expression of numerous lncRNAs has been confirmed as a key factor for cancer development. The regulatory role of PAX8-AS1 in some cancers has been investigated, but its role in OC progression remains unclear. This study focuses on the role and molecular mechanism of PAX8-AS1 in the malignant progression of OC.</p></div><div><h3>Methods</h3><p>Bioinformatics means were adopted to analyze the expression of PAX8-AS1, microRNA-25–3p, and LATS2 in OC tissues and the binding sites between the three. qRT-PCR was employed to determine the expression of these genes in OC cells. CCK-8, colony formation, scratch healing, and Transwell assays were used to see cell viability, proliferation, migration, and invasion, respectively. Fluorescence in situ Hybridization was performed to probe the subcellular localization of PAX8-AS1. Western blot was applied to evaluate the expression and phosphorylation levels of YAP and TAZ, and an immunofluorescence assay was used to detect the translocation of them. Dual luciferase assay was applied to validate the binding relationship between PAX8-AS1 and microRNA-25–3p, as well as between microRNA-25–3p and LATS2.</p></div><div><h3>Results</h3><p>PAX8-AS1 and LATS2 were lowly expressed. MicroRNA-25–3p was highly expressed in OC. PAX8-AS1 was expressed in cytoplasm and regulated LATS2 expression by sponging microRNA-25–3p. Overexpressing PAX8-AS1 can suppress the malignant behaviors of OC cells, whereas treatment with microRNA-mimic can reverse these results. In addition, the phosphorylation levels of YAP and TAZ increased upon oe-LATS2 treatment, and oe-LATS2 could promote YAP and TAZ translocate from the nucleus to cytoplasm. Rescue experiments demonstrated that sh-PAX8-AS1 fostered malignant progression of OC, which was reversed by simultaneous oe-LATS2.</p></div><div><h3>Conclusion</h3><p>In summary, PAX8-AS1/microRNA-25–3p/LATS2 regulated the malignant progression of OC through Hippo signaling, which suggested that PAX8-AS1/microRNA-25–3p/LATS2 axis may be a novel target for OC treatment.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"829 ","pages":"Article 111858"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510724000083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ovarian cancer (OC) is a frequent malignancy of the female reproductive system. Recently, the aberrant expression of numerous lncRNAs has been confirmed as a key factor for cancer development. The regulatory role of PAX8-AS1 in some cancers has been investigated, but its role in OC progression remains unclear. This study focuses on the role and molecular mechanism of PAX8-AS1 in the malignant progression of OC.
Methods
Bioinformatics means were adopted to analyze the expression of PAX8-AS1, microRNA-25–3p, and LATS2 in OC tissues and the binding sites between the three. qRT-PCR was employed to determine the expression of these genes in OC cells. CCK-8, colony formation, scratch healing, and Transwell assays were used to see cell viability, proliferation, migration, and invasion, respectively. Fluorescence in situ Hybridization was performed to probe the subcellular localization of PAX8-AS1. Western blot was applied to evaluate the expression and phosphorylation levels of YAP and TAZ, and an immunofluorescence assay was used to detect the translocation of them. Dual luciferase assay was applied to validate the binding relationship between PAX8-AS1 and microRNA-25–3p, as well as between microRNA-25–3p and LATS2.
Results
PAX8-AS1 and LATS2 were lowly expressed. MicroRNA-25–3p was highly expressed in OC. PAX8-AS1 was expressed in cytoplasm and regulated LATS2 expression by sponging microRNA-25–3p. Overexpressing PAX8-AS1 can suppress the malignant behaviors of OC cells, whereas treatment with microRNA-mimic can reverse these results. In addition, the phosphorylation levels of YAP and TAZ increased upon oe-LATS2 treatment, and oe-LATS2 could promote YAP and TAZ translocate from the nucleus to cytoplasm. Rescue experiments demonstrated that sh-PAX8-AS1 fostered malignant progression of OC, which was reversed by simultaneous oe-LATS2.
Conclusion
In summary, PAX8-AS1/microRNA-25–3p/LATS2 regulated the malignant progression of OC through Hippo signaling, which suggested that PAX8-AS1/microRNA-25–3p/LATS2 axis may be a novel target for OC treatment.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.