β1 integrins regulate cellular behaviour and cardiomyocyte organization during ventricular wall formation.

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Lianjie Miao, Yangyang Lu, Anika Nusrat, Luqi Zhao, Micah Castillo, Yongqi Xiao, Hongyang Guo, Yu Liu, Preethi Gunaratne, Robert J Schwartz, Alan R Burns, Ashok Kumar, C Michael DiPersio, Mingfu Wu
{"title":"β1 integrins regulate cellular behaviour and cardiomyocyte organization during ventricular wall formation.","authors":"Lianjie Miao, Yangyang Lu, Anika Nusrat, Luqi Zhao, Micah Castillo, Yongqi Xiao, Hongyang Guo, Yu Liu, Preethi Gunaratne, Robert J Schwartz, Alan R Burns, Ashok Kumar, C Michael DiPersio, Mingfu Wu","doi":"10.1093/cvr/cvae111","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The mechanisms regulating the cellular behaviour and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behaviour and organization during ventricular wall morphogenesis in the mouse.</p><p><strong>Methods and results: </strong>We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, and fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1, which encodes the β1, was deleted via Nkx2.5Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of a trabecular zone but a thicker compact zone. The levels of hyaluronic acid and versican, essential for trabecular initiation, were not significantly different between control and B1KO. Instead, fibronectin, a ligand of β1, was absent in the myocardium of B1KO hearts. Furthermore, B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. Mosaic clonal lineage tracing showed that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously.</p><p><strong>Conclusion: </strong>β1 is asymmetrically localized in the cardiomyocytes, and some of its ECM ligands are enriched along the luminal side of the myocardium, and fibronectin surrounds cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 leads to loss of β1 and fibronectin and prevents cardiomyocytes from engaging the ECM network, resulting in failure to establish tissue architecture to form trabeculae.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":"1279-1294"},"PeriodicalIF":10.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae111","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: The mechanisms regulating the cellular behaviour and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behaviour and organization during ventricular wall morphogenesis in the mouse.

Methods and results: We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, and fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1, which encodes the β1, was deleted via Nkx2.5Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of a trabecular zone but a thicker compact zone. The levels of hyaluronic acid and versican, essential for trabecular initiation, were not significantly different between control and B1KO. Instead, fibronectin, a ligand of β1, was absent in the myocardium of B1KO hearts. Furthermore, B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. Mosaic clonal lineage tracing showed that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously.

Conclusion: β1 is asymmetrically localized in the cardiomyocytes, and some of its ECM ligands are enriched along the luminal side of the myocardium, and fibronectin surrounds cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 leads to loss of β1 and fibronectin and prevents cardiomyocytes from engaging the ECM network, resulting in failure to establish tissue architecture to form trabeculae.

β1整合素在心室壁形成过程中调控细胞行为和心肌细胞组织。
目的:人们对心室壁形态发生过程中细胞行为和心肌细胞组织的调节机制知之甚少。心肌细胞被细胞外基质(ECM)包围,并通过整合素与 ECM 相互作用。本研究旨在确定β1整合素是否以及如何调控小鼠心室壁形态发生过程中心肌细胞的行为和组织:我们应用 mRNA 深度测序和免疫染色法确定了胚胎心脏中 α/β 整合素及其配体的表达谱。整合素β1亚基(β1)及其一些ECM配体不对称分布并富集在心肌细胞的管腔侧,纤维粘连蛋白包围着心肌细胞,为它们形成了一个网络。通过Nkx2.5Cre/+删除编码β1的Itgb1,产生心肌特异性Itgb1基因敲除(B1KO)小鼠。B1KO 小鼠的心脏没有小梁区,但有较厚的致密区。对照组和 B1KO 小鼠的透明质酸和 versican(小梁形成所必需的物质)水平没有显著差异。相反,B1KO 心脏的心肌中缺乏纤维连接蛋白(β1 的配体)。此外,B1KO 心肌细胞显示出随机的细胞定向,无法进行垂直细胞分裂、正常组织和建立适当的组织结构以形成小梁。结论:β1在心肌细胞中不对称定位,其部分ECM配体沿心肌腔侧富集,纤维粘连蛋白包围心肌细胞。β1整合素是心肌细胞附着到ECM网络的必要条件。这种连接为心肌细胞维持形状、进行垂直分裂和建立细胞组织提供了结构支持。Itgb1的缺失会导致β1和纤连蛋白的缺失,并阻止心肌细胞与ECM网络接合,从而无法建立组织结构,形成小梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信