Development of scoring-assisted generative exploration (SAGE) and its application to dual inhibitor design for acetylcholinesterase and monoamine oxidase B
{"title":"Development of scoring-assisted generative exploration (SAGE) and its application to dual inhibitor design for acetylcholinesterase and monoamine oxidase B","authors":"Hocheol Lim","doi":"10.1186/s13321-024-00845-w","DOIUrl":null,"url":null,"abstract":"<p>De novo molecular design is the process of searching chemical space for drug-like molecules with desired properties, and deep learning has been recognized as a promising solution. In this study, I developed an effective computational method called Scoring-Assisted Generative Exploration (SAGE) to enhance chemical diversity and property optimization through virtual synthesis simulation, the generation of bridged bicyclic rings, and multiple scoring models for drug-likeness. In six protein targets, SAGE generated molecules with high scores within reasonable numbers of steps by optimizing target specificity without a constraint and even with multiple constraints such as synthetic accessibility, solubility, and metabolic stability. Furthermore, I suggested a top-ranked molecule with SAGE as dual inhibitors of acetylcholinesterase and monoamine oxidase B through multiple desired property optimization. Therefore, SAGE can generate molecules with desired properties by optimizing multiple properties simultaneously, indicating the importance of de novo design strategies in the future of drug discovery and development.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00845-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00845-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
De novo molecular design is the process of searching chemical space for drug-like molecules with desired properties, and deep learning has been recognized as a promising solution. In this study, I developed an effective computational method called Scoring-Assisted Generative Exploration (SAGE) to enhance chemical diversity and property optimization through virtual synthesis simulation, the generation of bridged bicyclic rings, and multiple scoring models for drug-likeness. In six protein targets, SAGE generated molecules with high scores within reasonable numbers of steps by optimizing target specificity without a constraint and even with multiple constraints such as synthetic accessibility, solubility, and metabolic stability. Furthermore, I suggested a top-ranked molecule with SAGE as dual inhibitors of acetylcholinesterase and monoamine oxidase B through multiple desired property optimization. Therefore, SAGE can generate molecules with desired properties by optimizing multiple properties simultaneously, indicating the importance of de novo design strategies in the future of drug discovery and development.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.