Investigating embedded data distribution strategy on reconstruction accuracy of flow field around the crosswind-affected train based on physics-informed neural networks
IF 4 3区 工程技术Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Investigating embedded data distribution strategy on reconstruction accuracy of flow field around the crosswind-affected train based on physics-informed neural networks","authors":"Guang-Zhi Zeng, Zheng-Wei Chen, Yi-Qing Ni, En-Ze Rui","doi":"10.1108/hff-11-2023-0709","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Physics-informed neural networks (PINNs) have become a new tendency in flow simulation, because of their self-advantage of integrating both physical and monitored information of fields in solving the Navier–Stokes equation and its variants. In view of the strengths of PINN, this study aims to investigate the impact of spatially embedded data distribution on the flow field results around the train in the crosswind environment reconstructed by PINN.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>PINN can integrate data residuals with physical residuals into the loss function to train its parameters, allowing it to approximate the solution of the governing equations. In addition, with the aid of labelled training data, PINN can also incorporate the real site information of the flow field in model training. In light of this, the PINN model is adopted to reconstruct a two-dimensional time-averaged flow field around a train under crosswinds in the spatial domain with the aid of sparse flow field data, and the prediction results are compared with the reference results obtained from numerical modelling.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The prediction results from PINN results demonstrated a low discrepancy with those obtained from numerical simulations. The results of this study indicate that a threshold of the spatial embedded data density exists, in both the near wall and far wall areas on the train’s leeward side, as well as the near train surface area. In other words, a negative effect on the PINN reconstruction accuracy will emerge if the spatial embedded data density exceeds or slips below the threshold. Also, the optimum arrangement of the spatial embedded data in reconstructing the flow field of the train in crosswinds is obtained in this work.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>In this work, a strategy of reconstructing the time-averaged flow field of the train under crosswind conditions is proposed based on the physics-informed data-driven method, which enhances the scope of neural network applications. In addition, for the flow field reconstruction, the effect of spatial embedded data arrangement in PINN is compared to improve its accuracy.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"15 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-11-2023-0709","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Physics-informed neural networks (PINNs) have become a new tendency in flow simulation, because of their self-advantage of integrating both physical and monitored information of fields in solving the Navier–Stokes equation and its variants. In view of the strengths of PINN, this study aims to investigate the impact of spatially embedded data distribution on the flow field results around the train in the crosswind environment reconstructed by PINN.
Design/methodology/approach
PINN can integrate data residuals with physical residuals into the loss function to train its parameters, allowing it to approximate the solution of the governing equations. In addition, with the aid of labelled training data, PINN can also incorporate the real site information of the flow field in model training. In light of this, the PINN model is adopted to reconstruct a two-dimensional time-averaged flow field around a train under crosswinds in the spatial domain with the aid of sparse flow field data, and the prediction results are compared with the reference results obtained from numerical modelling.
Findings
The prediction results from PINN results demonstrated a low discrepancy with those obtained from numerical simulations. The results of this study indicate that a threshold of the spatial embedded data density exists, in both the near wall and far wall areas on the train’s leeward side, as well as the near train surface area. In other words, a negative effect on the PINN reconstruction accuracy will emerge if the spatial embedded data density exceeds or slips below the threshold. Also, the optimum arrangement of the spatial embedded data in reconstructing the flow field of the train in crosswinds is obtained in this work.
Originality/value
In this work, a strategy of reconstructing the time-averaged flow field of the train under crosswind conditions is proposed based on the physics-informed data-driven method, which enhances the scope of neural network applications. In addition, for the flow field reconstruction, the effect of spatial embedded data arrangement in PINN is compared to improve its accuracy.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf