Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL
Jian Song, Jianfeng Yao, Wangjun Yuan
{"title":"Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion","authors":"Jian Song, Jianfeng Yao, Wangjun Yuan","doi":"10.1142/s2010326324500096","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study high-dimensional behavior of empirical spectral distributions <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> for a class of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo stretchy=\"false\">×</mo><mi>N</mi></math></span><span></span> symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. For Wigner-type matrices, we obtain almost sure relative compactness of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> following the approach in [1]; for Wishart-type matrices, we obtain tightness of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> on <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> by tightness criterions provided in Appendix B. The limit of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> as <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>→</mo><mi>∞</mi></math></span><span></span> is also characterized.</p>","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"57 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500096","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study high-dimensional behavior of empirical spectral distributions {LN(t),t[0,T]} for a class of N×N symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter H(1/2,1). For Wigner-type matrices, we obtain almost sure relative compactness of {LN(t),t[0,T]}N in C([0,T],P()) following the approach in [1]; for Wishart-type matrices, we obtain tightness of {LN(t),t[0,T]}N on C([0,T],P()) by tightness criterions provided in Appendix B. The limit of {LN(t),t[0,T]} as N is also characterized.

分数布朗运动驱动的高维矩阵过程的特征值分布
本文研究了一类 N×N 对称/赫米特随机矩阵的经验谱分布 {LN(t),t∈[0,T]}的高维行为,这些矩阵的条目由分数布朗运动驱动的随机微分方程的解生成,赫斯特参数为 H∈(1/2,1)。对于 Wigner 型矩阵,我们按照 [1] 中的方法得到了 C([0,T],P(ℝ) 中 {LN(t),t∈[0,T]}N∈ℕ 的几乎确定的相对紧凑性;]对于 Wishart 型矩阵,我们通过附录 B 中提供的严密性判据得到 {LN(t),t∈[0,T]}N∈ℕ 在 C([0,T],P(ℝ)) 上的严密性。{LN(t),t∈[0,T]}随 N→∞ 的极限也被表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信