Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion

Pub Date : 2024-05-20 DOI:10.1142/s2010326324500096
Jian Song, Jianfeng Yao, Wangjun Yuan
{"title":"Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion","authors":"Jian Song, Jianfeng Yao, Wangjun Yuan","doi":"10.1142/s2010326324500096","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study high-dimensional behavior of empirical spectral distributions <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> for a class of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo stretchy=\"false\">×</mo><mi>N</mi></math></span><span></span> symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. For Wigner-type matrices, we obtain almost sure relative compactness of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> following the approach in [1]; for Wishart-type matrices, we obtain tightness of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> on <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> by tightness criterions provided in Appendix B. The limit of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> as <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>→</mo><mi>∞</mi></math></span><span></span> is also characterized.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study high-dimensional behavior of empirical spectral distributions {LN(t),t[0,T]} for a class of N×N symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter H(1/2,1). For Wigner-type matrices, we obtain almost sure relative compactness of {LN(t),t[0,T]}N in C([0,T],P()) following the approach in [1]; for Wishart-type matrices, we obtain tightness of {LN(t),t[0,T]}N on C([0,T],P()) by tightness criterions provided in Appendix B. The limit of {LN(t),t[0,T]} as N is also characterized.

分享
查看原文
分数布朗运动驱动的高维矩阵过程的特征值分布
本文研究了一类 N×N 对称/赫米特随机矩阵的经验谱分布 {LN(t),t∈[0,T]}的高维行为,这些矩阵的条目由分数布朗运动驱动的随机微分方程的解生成,赫斯特参数为 H∈(1/2,1)。对于 Wigner 型矩阵,我们按照 [1] 中的方法得到了 C([0,T],P(ℝ) 中 {LN(t),t∈[0,T]}N∈ℕ 的几乎确定的相对紧凑性;]对于 Wishart 型矩阵,我们通过附录 B 中提供的严密性判据得到 {LN(t),t∈[0,T]}N∈ℕ 在 C([0,T],P(ℝ)) 上的严密性。{LN(t),t∈[0,T]}随 N→∞ 的极限也被表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信