{"title":"Characteristic polynomials of orthogonal and symplectic random matrices, Jacobi ensembles & L-functions","authors":"Mustafa Alper Gunes","doi":"10.1142/s2010326324500060","DOIUrl":null,"url":null,"abstract":"<p>Starting from Montgomery’s conjecture, there has been a substantial interest on the connections of random matrix theory and the theory of <i>L</i>-functions. In particular, moments of characteristic polynomials of random matrices have been considered in various works to estimate the asymptotics of moments of <i>L</i>-function families. In this paper, we first consider joint moments of the characteristic polynomial of a symplectic random matrix and its second derivative. We obtain the asymptotics, along with a representation of the leading order coefficient in terms of the solution of a Painlevé equation. This gives us the conjectural asymptotics of the corresponding joint moments over families of Dirichlet <i>L</i>-functions. In doing so, we compute the asymptotics of a certain additive Jacobi statistic, which could be of independent interest in random matrix theory. Finally, we consider a slightly different type of joint moment that is the analogue of an average considered over <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>U</mi><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math></span><span></span> in various works before. We obtain the asymptotics and the leading order coefficient explicitly.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Starting from Montgomery’s conjecture, there has been a substantial interest on the connections of random matrix theory and the theory of L-functions. In particular, moments of characteristic polynomials of random matrices have been considered in various works to estimate the asymptotics of moments of L-function families. In this paper, we first consider joint moments of the characteristic polynomial of a symplectic random matrix and its second derivative. We obtain the asymptotics, along with a representation of the leading order coefficient in terms of the solution of a Painlevé equation. This gives us the conjectural asymptotics of the corresponding joint moments over families of Dirichlet L-functions. In doing so, we compute the asymptotics of a certain additive Jacobi statistic, which could be of independent interest in random matrix theory. Finally, we consider a slightly different type of joint moment that is the analogue of an average considered over in various works before. We obtain the asymptotics and the leading order coefficient explicitly.
从蒙哥马利猜想开始,人们对随机矩阵理论和 L 函数理论之间的联系产生了浓厚的兴趣。特别是,随机矩阵的特征多项式的矩在各种著作中被用来估计 L 函数族的矩的渐近性。在本文中,我们首先考虑交点随机矩阵的特征多项式及其二次导数的联合矩。我们得到了渐近线,以及前阶系数在潘列韦方程解中的表示。这样,我们就得到了迪里夏特 L 函数族上相应联合矩的猜想渐近学。在此过程中,我们计算了某个加性雅可比统计量的渐近线,这可能与随机矩阵理论有关。最后,我们考虑了一种略有不同的联合矩,它是之前各种著作中考虑的 U(N) 上平均值的类似物。我们明确地得到了渐近线和前阶系数。