Shengzhe Wang , Ziyan Xu , Yidan Wang , Ziyao Tan , Dahu Zhu
{"title":"Model-enabled robotic machining framework for repairing paint film defects","authors":"Shengzhe Wang , Ziyan Xu , Yidan Wang , Ziyao Tan , Dahu Zhu","doi":"10.1016/j.rcim.2024.102791","DOIUrl":null,"url":null,"abstract":"<div><p>Region-based robotic machining is considered an effective strategy for automatically repairing paint film defects compared to conventional global machining. However, this process faces challenges due to irregularities in defect position, shape, and size. To overcome these challenges, this paper proposes a model-enabled robotic machining framework for repairing paint film defects by leveraging the workpiece model as an enabling means. Within the system framework, an improved YOLOv5 algorithm is presented at first to enhance the visual detection accuracy of paint film defects in terms of network structure and loss function. Additionally, a target positioning method based on the pixel-point inverse projection technology is developed to map the 2D defect detection results onto the workpiece 3D model, which primarily aims at obtaining the orientation information through the connection between the monocular vision unit and the model. Finally, an optimal tool deployment strategy by virtue of the least projection coverage circle is proposed to determine the least machined position as well as the shortest robot path by constructing the mapping between the defects and the tool operation size. The constructed system framework is verified effective and practical by the experiments of region-based robotic grinding and repairing of paint film defects on high-speed train (HST) body sidewalls.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"89 ","pages":"Article 102791"},"PeriodicalIF":9.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524000784","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Region-based robotic machining is considered an effective strategy for automatically repairing paint film defects compared to conventional global machining. However, this process faces challenges due to irregularities in defect position, shape, and size. To overcome these challenges, this paper proposes a model-enabled robotic machining framework for repairing paint film defects by leveraging the workpiece model as an enabling means. Within the system framework, an improved YOLOv5 algorithm is presented at first to enhance the visual detection accuracy of paint film defects in terms of network structure and loss function. Additionally, a target positioning method based on the pixel-point inverse projection technology is developed to map the 2D defect detection results onto the workpiece 3D model, which primarily aims at obtaining the orientation information through the connection between the monocular vision unit and the model. Finally, an optimal tool deployment strategy by virtue of the least projection coverage circle is proposed to determine the least machined position as well as the shortest robot path by constructing the mapping between the defects and the tool operation size. The constructed system framework is verified effective and practical by the experiments of region-based robotic grinding and repairing of paint film defects on high-speed train (HST) body sidewalls.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.