Joshua Wilson , Saimou Zhang , Corey Palermo , Tania Cruz Cordero , Fan Zhang , Matthew C. Myers , Andrew Potter , Halley Eacker , Jessica Coles
{"title":"A Latent Dirichlet Allocation approach to understanding students’ perceptions of Automated Writing Evaluation","authors":"Joshua Wilson , Saimou Zhang , Corey Palermo , Tania Cruz Cordero , Fan Zhang , Matthew C. Myers , Andrew Potter , Halley Eacker , Jessica Coles","doi":"10.1016/j.caeo.2024.100194","DOIUrl":null,"url":null,"abstract":"<div><p>Automated writing evaluation (AWE) has shown promise in enhancing students’ writing outcomes. However, further research is needed to understand how AWE is perceived by middle school students in the United States, as they have received less attention in this field. This study investigated U.S. middle school students’ perceptions of the <em>MI Write</em> AWE system. Students reported their perceptions of MI Write's usefulness using Likert-scale items and an open-ended survey question. We used Latent Dirichlet Allocation (LDA) to identify latent topics in students’ comments, followed by qualitative analysis to interpret the themes related to those topics. We then examined whether these themes differed among students who agreed or disagreed that MI Write was a useful learning tool. The LDA analysis revealed four latent topics: (1) students desire more in-depth feedback, (2) students desire an enhanced user experience, (3) students value MI Write as a learning tool but desire greater personalization, and (4) students desire increased fairness in automated scoring. The distribution of these topics varied based on students’ ratings of MI Write's usefulness, with Topic 1 more prevalent among students who generally did not find MI Write useful and Topic 3 more prominent among those who found MI Write useful. Our findings contribute to the enhancement and implementation of AWE systems, guide future AWE technology development, and highlight the efficacy of LDA in uncovering latent topics and patterns within textual data to explore students’ perspectives of AWE.</p></div>","PeriodicalId":100322,"journal":{"name":"Computers and Education Open","volume":"6 ","pages":"Article 100194"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266655732400034X/pdfft?md5=59757519cdab584f256a934357fa2a53&pid=1-s2.0-S266655732400034X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266655732400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Automated writing evaluation (AWE) has shown promise in enhancing students’ writing outcomes. However, further research is needed to understand how AWE is perceived by middle school students in the United States, as they have received less attention in this field. This study investigated U.S. middle school students’ perceptions of the MI Write AWE system. Students reported their perceptions of MI Write's usefulness using Likert-scale items and an open-ended survey question. We used Latent Dirichlet Allocation (LDA) to identify latent topics in students’ comments, followed by qualitative analysis to interpret the themes related to those topics. We then examined whether these themes differed among students who agreed or disagreed that MI Write was a useful learning tool. The LDA analysis revealed four latent topics: (1) students desire more in-depth feedback, (2) students desire an enhanced user experience, (3) students value MI Write as a learning tool but desire greater personalization, and (4) students desire increased fairness in automated scoring. The distribution of these topics varied based on students’ ratings of MI Write's usefulness, with Topic 1 more prevalent among students who generally did not find MI Write useful and Topic 3 more prominent among those who found MI Write useful. Our findings contribute to the enhancement and implementation of AWE systems, guide future AWE technology development, and highlight the efficacy of LDA in uncovering latent topics and patterns within textual data to explore students’ perspectives of AWE.