{"title":"Identification of low-wavenumber wall pressure field beneath a turbulent boundary layer using vibration data","authors":"Hesam Abtahi , Mahmoud Karimi , Laurent Maxit","doi":"10.1016/j.jfluidstructs.2024.104135","DOIUrl":null,"url":null,"abstract":"<div><p>Although the most energetic part of the wall pressure field (WPF) beneath a turbulent boundary layer (TBL) is within the convective region, this region is mostly filtered out by the structure when excited by a low Mach number turbulent flow. Therefore, structural vibration is primarily induced by the low-wavenumber components of the WPF. This highlights the importance of an accurate estimation of the low-wavenumber WPF for predicting flow-induced vibration of structures. Existing semi-empirical TBL models for the WPF agree well in the convective region but significantly differ from one another in estimating the low-wavenumber levels. In this study, we aim to investigate the feasibility of estimating the low-wavenumber WPF by analyzing vibration data from a structure excited by a TBL. The proposed approach is based on the relationship between the TBL forcing function and structural vibrations in the wavenumber domain. By utilizing vibration data obtained from a structure excited by a TBL and incorporating the sensitivity functions of the respective structure, it is possible to estimate the cross-spectrum density of the pressure fluctuations in the wavenumber domain. To demonstrate the effectiveness of the proposed method, an analytical model of a simply-supported panel excited by a reference TBL model is employed. The vibration data of the panel is then used in an inverse method to identify the low-wavenumber levels of the pressure fluctuations, which are then compared to those of the reference TBL model. The performance of the proposed method is examined through a parametric study and virtual experiments.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974624000707/pdfft?md5=a708e02becc4171cb57c926d3beb4fd4&pid=1-s2.0-S0889974624000707-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000707","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although the most energetic part of the wall pressure field (WPF) beneath a turbulent boundary layer (TBL) is within the convective region, this region is mostly filtered out by the structure when excited by a low Mach number turbulent flow. Therefore, structural vibration is primarily induced by the low-wavenumber components of the WPF. This highlights the importance of an accurate estimation of the low-wavenumber WPF for predicting flow-induced vibration of structures. Existing semi-empirical TBL models for the WPF agree well in the convective region but significantly differ from one another in estimating the low-wavenumber levels. In this study, we aim to investigate the feasibility of estimating the low-wavenumber WPF by analyzing vibration data from a structure excited by a TBL. The proposed approach is based on the relationship between the TBL forcing function and structural vibrations in the wavenumber domain. By utilizing vibration data obtained from a structure excited by a TBL and incorporating the sensitivity functions of the respective structure, it is possible to estimate the cross-spectrum density of the pressure fluctuations in the wavenumber domain. To demonstrate the effectiveness of the proposed method, an analytical model of a simply-supported panel excited by a reference TBL model is employed. The vibration data of the panel is then used in an inverse method to identify the low-wavenumber levels of the pressure fluctuations, which are then compared to those of the reference TBL model. The performance of the proposed method is examined through a parametric study and virtual experiments.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.