Parameter inference for degenerate diffusion processes

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Yuga Iguchi , Alexandros Beskos , Matthew M. Graham
{"title":"Parameter inference for degenerate diffusion processes","authors":"Yuga Iguchi ,&nbsp;Alexandros Beskos ,&nbsp;Matthew M. Graham","doi":"10.1016/j.spa.2024.104384","DOIUrl":null,"url":null,"abstract":"<div><p>We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic Stochastic Differential Equations (SDEs), with components split into ‘rough’/‘smooth’ and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the <em>highly degenerate</em> class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general ‘recipe’ for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104384"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924000905/pdfft?md5=89cc3606fec53926f51d3f981aa8013d&pid=1-s2.0-S0304414924000905-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000905","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic Stochastic Differential Equations (SDEs), with components split into ‘rough’/‘smooth’ and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general ‘recipe’ for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.

退化扩散过程的参数推断
我们研究具有退化扩散矩阵的遍历扩散过程的参数推断。现有研究集中于一类特殊的次椭圆随机微分方程(SDEs),其分量分为 "粗糙"/"平滑 "两类,粗糙分量的噪声直接传播到平滑分量上。我们的目标是填补这一空白,从而分析高度退化的 SDE 类模型,其中的分量又进一步分为多个子组。这类模型包括广义朗格文方程等显著案例。我们提出了一种量身定制的时间离散化方案,并提供了在高频、全面观测背景下支持我们方案的渐近结果。我们提出的离散化方案适用于更广泛的数据环境,并通过模拟研究证明,在只观测到平滑分量的实际情况下也能克服偏差。我们对高度退化 SDEs 的研究与现有研究相结合,为开发时间离散化方案提供了一个通用 "配方",该方案可用于一般类别的次椭圆 SDEs 统计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信