Advances in long-read single-cell transcriptomics.

IF 3.8 2区 生物学 Q2 GENETICS & HEREDITY
Human Genetics Pub Date : 2024-10-01 Epub Date: 2024-05-24 DOI:10.1007/s00439-024-02678-x
Pallawi Kumari, Manmeet Kaur, Kiran Dindhoria, Bruce Ashford, Shanika L Amarasinghe, Amarinder Singh Thind
{"title":"Advances in long-read single-cell transcriptomics.","authors":"Pallawi Kumari, Manmeet Kaur, Kiran Dindhoria, Bruce Ashford, Shanika L Amarasinghe, Amarinder Singh Thind","doi":"10.1007/s00439-024-02678-x","DOIUrl":null,"url":null,"abstract":"<p><p>Long-read single-cell transcriptomics (scRNA-Seq) is revolutionizing the way we profile heterogeneity in disease. Traditional short-read scRNA-Seq methods are limited in their ability to provide complete transcript coverage, resolve isoforms, and identify novel transcripts. The scRNA-Seq protocols developed for long-read sequencing platforms overcome these limitations by enabling the characterization of full-length transcripts. Long-read scRNA-Seq techniques initially suffered from comparatively poor accuracy compared to short read scRNA-Seq. However, with improvements in accuracy, accessibility, and cost efficiency, long-reads are gaining popularity in the field of scRNA-Seq. This review details the advances in long-read scRNA-Seq, with an emphasis on library preparation protocols and downstream bioinformatics analysis tools.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"1005-1020"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02678-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-read single-cell transcriptomics (scRNA-Seq) is revolutionizing the way we profile heterogeneity in disease. Traditional short-read scRNA-Seq methods are limited in their ability to provide complete transcript coverage, resolve isoforms, and identify novel transcripts. The scRNA-Seq protocols developed for long-read sequencing platforms overcome these limitations by enabling the characterization of full-length transcripts. Long-read scRNA-Seq techniques initially suffered from comparatively poor accuracy compared to short read scRNA-Seq. However, with improvements in accuracy, accessibility, and cost efficiency, long-reads are gaining popularity in the field of scRNA-Seq. This review details the advances in long-read scRNA-Seq, with an emphasis on library preparation protocols and downstream bioinformatics analysis tools.

Abstract Image

长线程单细胞转录组学的进展。
长线程单细胞转录组学(scRNA-Seq)正在彻底改变我们分析疾病异质性的方法。传统的短线程 scRNA-Seq 方法在提供完整的转录本覆盖范围、解析同工酶和鉴定新型转录本方面能力有限。为长读程测序平台开发的 scRNA-Seq 协议克服了这些局限性,能够鉴定全长转录本。与短读 scRNA-Seq 相比,长读 scRNA-Seq 技术最初的准确性较差。然而,随着准确性、可及性和成本效率的提高,长读数在 scRNA-Seq 领域越来越受欢迎。这篇综述详细介绍了长读数 scRNA-Seq 的进展,重点是文库制备方案和下游生物信息学分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Genetics
Human Genetics 生物-遗传学
CiteScore
10.80
自引率
3.80%
发文量
94
审稿时长
1 months
期刊介绍: Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted. The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信