On the Computation of the Gaussian Rate–Distortion–Perception Function

Giuseppe Serra;Photios A. Stavrou;Marios Kountouris
{"title":"On the Computation of the Gaussian Rate–Distortion–Perception Function","authors":"Giuseppe Serra;Photios A. Stavrou;Marios Kountouris","doi":"10.1109/JSAIT.2024.3381230","DOIUrl":null,"url":null,"abstract":"In this paper, we study the computation of the rate-distortion-perception function (RDPF) for a multivariate Gaussian source assuming jointly Gaussian reconstruction under mean squared error (MSE) distortion and, respectively, Kullback–Leibler divergence, geometric Jensen-Shannon divergence, squared Hellinger distance, and squared Wasserstein-2 distance perception metrics. To this end, we first characterize the analytical bounds of the scalar Gaussian RDPF for the aforementioned divergence functions, also providing the RDPF-achieving forward “test-channel” realization. Focusing on the multivariate case, assuming jointly Gaussian reconstruction and tensorizable distortion and perception metrics, we establish that the optimal solution resides on the vector space spanned by the eigenvector of the source covariance matrix. Consequently, the multivariate optimization problem can be expressed as a function of the scalar Gaussian RDPFs of the source marginals, constrained by global distortion and perception levels. Leveraging this characterization, we design an alternating minimization scheme based on the block nonlinear Gauss–Seidel method, which optimally solves the problem while identifying the Gaussian RDPF-achieving realization. Furthermore, the associated algorithmic embodiment is provided, as well as the convergence and the rate of convergence characterization. Lastly, for the “perfect realism” regime, the analytical solution for the multivariate Gaussian RDPF is obtained. We corroborate our results with numerical simulations and draw connections to existing results.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"314-330"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10485392/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the computation of the rate-distortion-perception function (RDPF) for a multivariate Gaussian source assuming jointly Gaussian reconstruction under mean squared error (MSE) distortion and, respectively, Kullback–Leibler divergence, geometric Jensen-Shannon divergence, squared Hellinger distance, and squared Wasserstein-2 distance perception metrics. To this end, we first characterize the analytical bounds of the scalar Gaussian RDPF for the aforementioned divergence functions, also providing the RDPF-achieving forward “test-channel” realization. Focusing on the multivariate case, assuming jointly Gaussian reconstruction and tensorizable distortion and perception metrics, we establish that the optimal solution resides on the vector space spanned by the eigenvector of the source covariance matrix. Consequently, the multivariate optimization problem can be expressed as a function of the scalar Gaussian RDPFs of the source marginals, constrained by global distortion and perception levels. Leveraging this characterization, we design an alternating minimization scheme based on the block nonlinear Gauss–Seidel method, which optimally solves the problem while identifying the Gaussian RDPF-achieving realization. Furthermore, the associated algorithmic embodiment is provided, as well as the convergence and the rate of convergence characterization. Lastly, for the “perfect realism” regime, the analytical solution for the multivariate Gaussian RDPF is obtained. We corroborate our results with numerical simulations and draw connections to existing results.
关于高斯速率-失真-感知函数的计算
本文研究了在均方误差(MSE)失真和库尔贝-莱布勒发散、几何詹森-香农发散、平方海灵格距离和平方瓦瑟斯坦-2距离感知度量下,假设联合高斯重构的多元高斯源的速率-失真-感知函数(RDPF)的计算。为此,我们首先描述了上述发散函数的标量高斯 RDPF 的分析边界,同时还提供了实现 RDPF 的前向 "测试通道 "实现。在多变量情况下,假设联合高斯重构以及可张量化的失真和感知度量,我们确定最优解位于源协方差矩阵特征向量所跨的向量空间。因此,多元优化问题可以表示为源边际的标量高斯 RDPF 的函数,并受到全局失真和感知水平的限制。利用这一特征,我们设计了一种基于分块非线性高斯-赛德尔法的交替最小化方案,在识别高斯 RDPF 实现的同时优化了问题的解决。此外,还提供了相关的算法体现,以及收敛性和收敛率的特征。最后,针对 "完美现实 "机制,我们得到了多变量高斯 RDPF 的解析解。我们用数值模拟证实了我们的结果,并得出了与现有结果的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信