A reservoir bathymetry retrieval study using the depth invariant index substrate cluster

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Jinshan Zhu , Bopeng Liu , Yina Han , Zhen Chen , Jianzhong Chen , Shijun Ding , Tao Li
{"title":"A reservoir bathymetry retrieval study using the depth invariant index substrate cluster","authors":"Jinshan Zhu ,&nbsp;Bopeng Liu ,&nbsp;Yina Han ,&nbsp;Zhen Chen ,&nbsp;Jianzhong Chen ,&nbsp;Shijun Ding ,&nbsp;Tao Li","doi":"10.1016/j.ejrs.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, bathymetry retrieval is combined with the Depth Invariant Index (DII) substrate cluster to acquire more accurate water depth. DIIs are calculated through the selected samples that are in bright and dark pixels firstly. Then, substrates are clustered with DIIs by using the K-MEANS cluster algorithm. Last, in-situ data and Genetic Algorithm (GA) are applied to solve the models’ parameters of the Stumpf model and the Legleiter model. The feasibility of this method is investigated in the Xia Shan Reservoir, Shandong Province, China. The experimental results show that (1) When there are various bottom types in the study area, the substrates cluster before bathymetry retrieval can significantly improve the retrieval accuracy. For example, in the without cluster case, the <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> values are both around 0.72 in the GF-2 image and the <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> values are both 0.53 in the Sentienl-2 image, and the minimum RMSE and RRMSE values are 1.09 m and 19.36 % respectively. When substrates are clustered into two clusters and three clusters, R<sup>2</sup> values have all increased and RMSE and RRMSE values decreased. (2) Clustering substrates into more clusters may not necessarily improve retrieval accuracy. For our research area, it’s better to divide the substrate into two clusters. For the two clusters case, the bathymetry result using the Legleiter model has a higher retrieval accuracy, which RMSE is 0.76 m, R<sup>2</sup> is 0.9 and RRMSE is 11.76 %. Compared with the three clusters case, the bathymetry retrieval accuracy of the two clusters case improves more obviously.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 3","pages":"Pages 479-490"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000401/pdfft?md5=a3e39b6bf74c51392d29432d180e5474&pid=1-s2.0-S1110982324000401-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000401","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, bathymetry retrieval is combined with the Depth Invariant Index (DII) substrate cluster to acquire more accurate water depth. DIIs are calculated through the selected samples that are in bright and dark pixels firstly. Then, substrates are clustered with DIIs by using the K-MEANS cluster algorithm. Last, in-situ data and Genetic Algorithm (GA) are applied to solve the models’ parameters of the Stumpf model and the Legleiter model. The feasibility of this method is investigated in the Xia Shan Reservoir, Shandong Province, China. The experimental results show that (1) When there are various bottom types in the study area, the substrates cluster before bathymetry retrieval can significantly improve the retrieval accuracy. For example, in the without cluster case, the R2 values are both around 0.72 in the GF-2 image and the R2 values are both 0.53 in the Sentienl-2 image, and the minimum RMSE and RRMSE values are 1.09 m and 19.36 % respectively. When substrates are clustered into two clusters and three clusters, R2 values have all increased and RMSE and RRMSE values decreased. (2) Clustering substrates into more clusters may not necessarily improve retrieval accuracy. For our research area, it’s better to divide the substrate into two clusters. For the two clusters case, the bathymetry result using the Legleiter model has a higher retrieval accuracy, which RMSE is 0.76 m, R2 is 0.9 and RRMSE is 11.76 %. Compared with the three clusters case, the bathymetry retrieval accuracy of the two clusters case improves more obviously.

利用深度不变指数基质群进行水库测深检索研究
本文将水深检索与深度不变指数(DII)基质群相结合,以获得更准确的水深。首先通过所选的亮暗像素样本计算 DII。然后,利用 K-MEANS 聚类算法将基质与 DIIs 聚类。最后,应用原位数据和遗传算法(GA)求解 Stumpf 模型和 Legleiter 模型的参数。该方法在中国山东省峡山水库进行了可行性研究。实验结果表明:(1) 当研究区域存在多种底质类型时,在测深前进行底质聚类可以显著提高测深精度。例如,在不聚类的情况下,GF-2 图像的 R2 值均在 0.72 左右,Sentienl-2 图像的 R2 值均为 0.53,最小 RMSE 值和 RRMSE 值分别为 1.09 m 和 19.36 %。当将基质聚类为两个簇和三个簇时,R2 值均有所上升,RMSE 值和 RRMSE 值均有所下降。(2) 将基质聚为更多的簇不一定能提高检索精度。对于我们的研究领域来说,将基质分为两个簇会更好。在两个簇的情况下,使用 Legleiter 模型的测深结果具有较高的检索精度,RMSE 为 0.76 米,R2 为 0.9,RRMSE 为 11.76%。与三个集群情况相比,两个集群情况下的测深精度提高更为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信