Diesel engine vibration analysis using artificial neural networks method: Effect of NH3 additive in biodiesels

Q1 Engineering
Raja Mazuir Raja Ahsan Shah , Ömer Böyükdipi , Gökhan Tüccar , Awni Al-Otoom , Hakan Serhad Soyhan
{"title":"Diesel engine vibration analysis using artificial neural networks method: Effect of NH3 additive in biodiesels","authors":"Raja Mazuir Raja Ahsan Shah ,&nbsp;Ömer Böyükdipi ,&nbsp;Gökhan Tüccar ,&nbsp;Awni Al-Otoom ,&nbsp;Hakan Serhad Soyhan","doi":"10.1016/j.treng.2024.100254","DOIUrl":null,"url":null,"abstract":"<div><p>Diesel engine parameters, such as fuel and its additives, play an essential role in minimising the effects of engine vibration. This study aimed to use artificial neural networks (ANN) to model and analyse diesel engine vibration characteristics at different engine speeds using NH<sub>3</sub> as an additive in hazelnut (HD), peanut (PD), and waste-cooking oil (WD) biodiesels. The results showed good correlations between the ANN models and experimental results using regression analysis methods. The ANN models for diesel engines showed high accuracy. The ANN models indicated that a 5 % NH<sub>3</sub> additive decreased engine vibration for HD and PD.</p><p>In comparison, 10 % and 15 % NH<sub>3</sub> additive ratios increased engine vibration for HD, PD, and WD due to low combustion quality. The lowest vibration levels occurred with P100, P95A5, P90A10, and P85A15 at 1200 rpm. H100 and H95A5 produced the highest diesel engine resultant vibration (DERV) values. All ANN models generated the lowest and highest DERV values at 1200 rpm and 2100 rpm, respectively. The RMS method showed that H95A5, P85A15, and W85A15 contributed the most to diesel engine vibration. Using a low amount of NH<sub>3</sub> additive positively affected DERV for HD and PD but not for WD.</p></div>","PeriodicalId":34480,"journal":{"name":"Transportation Engineering","volume":"16 ","pages":"Article 100254"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666691X24000290/pdfft?md5=2237e45756221bd183b780a75ddf1f24&pid=1-s2.0-S2666691X24000290-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666691X24000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Diesel engine parameters, such as fuel and its additives, play an essential role in minimising the effects of engine vibration. This study aimed to use artificial neural networks (ANN) to model and analyse diesel engine vibration characteristics at different engine speeds using NH3 as an additive in hazelnut (HD), peanut (PD), and waste-cooking oil (WD) biodiesels. The results showed good correlations between the ANN models and experimental results using regression analysis methods. The ANN models for diesel engines showed high accuracy. The ANN models indicated that a 5 % NH3 additive decreased engine vibration for HD and PD.

In comparison, 10 % and 15 % NH3 additive ratios increased engine vibration for HD, PD, and WD due to low combustion quality. The lowest vibration levels occurred with P100, P95A5, P90A10, and P85A15 at 1200 rpm. H100 and H95A5 produced the highest diesel engine resultant vibration (DERV) values. All ANN models generated the lowest and highest DERV values at 1200 rpm and 2100 rpm, respectively. The RMS method showed that H95A5, P85A15, and W85A15 contributed the most to diesel engine vibration. Using a low amount of NH3 additive positively affected DERV for HD and PD but not for WD.

利用人工神经网络方法分析柴油发动机振动:生物柴油中 NH3 添加剂的影响
柴油发动机参数,如燃料及其添加剂,对最大限度地减少发动机振动的影响起着至关重要的作用。本研究旨在使用人工神经网络(ANN)对榛子(HD)、花生(PD)和废食用油(WD)生物柴油中使用 NH3 作为添加剂的柴油发动机在不同发动机转速下的振动特性进行建模和分析。结果表明,使用回归分析方法,ANN 模型与实验结果之间具有良好的相关性。用于柴油发动机的 ANN 模型显示出很高的准确性。ANN 模型表明,5% 的 NH3 添加剂可减少 HD 和 PD 的发动机振动。相比之下,10% 和 15% 的 NH3 添加剂比例会增加 HD、PD 和 WD 的发动机振动,原因是燃烧质量较低。在转速为 1200 rpm 时,P100、P95A5、P90A10 和 P85A15 的振动水平最低。H100 和 H95A5 产生的柴油机结果振动 (DERV) 值最高。所有 ANN 模型分别在 1200 rpm 和 2100 rpm 时产生最低和最高 DERV 值。有效值法显示,H95A5、P85A15 和 W85A15 对柴油机振动的影响最大。使用少量 NH3 添加剂对 HD 和 PD 的 DERV 有积极影响,但对 WD 没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Engineering
Transportation Engineering Engineering-Automotive Engineering
CiteScore
8.10
自引率
0.00%
发文量
46
审稿时长
90 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信