{"title":"Effect of Alaska pollock-gelatin sheet on repair strength and regeneration of nerve.","authors":"Ryosuke Tsujisaka, Taku Suzuki, Shinsuke Shibata, Takuji Iwamoto, Tetsushi Taguchi, Masaya Nakamura","doi":"10.1177/17531934241251670","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the study was to investigate the repair strength and the biocompatibility of Alaska pollock-derived gelatin (ApGltn) sheet for nerve repair. Cadaveric digital nerves were repaired with double suture, single suture + ApGltn sheet, single suture + fibrin glue, single suture, ApGltn sheet and fibrin. Maximum failure loads were measured (20 nerves each). Rat sciatic nerves were repaired with double suture, single suture + ApGltn sheet, single suture, ApGltn sheet, fibrin glue and resection (10 nerves each). Macroscopic appearance, muscle weight and histopathological findings were examined 8 weeks postoperatively. The mean failure load of ApGltn sheet (0.39 N) was significantly higher than that of a fibrin (0.05 N), and that of single suture + ApGltn sheet (1.32 N) was significantly higher than that of a single suture alone (0.97 N). Functional and histological assessments showed similar nerve recovery among the suture, ApGltn and fibrin groups. ApGltn sheet has potential for clinical application as an alternative to fibrin.</p>","PeriodicalId":94237,"journal":{"name":"The Journal of hand surgery, European volume","volume":" ","pages":"76-84"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of hand surgery, European volume","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17531934241251670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the study was to investigate the repair strength and the biocompatibility of Alaska pollock-derived gelatin (ApGltn) sheet for nerve repair. Cadaveric digital nerves were repaired with double suture, single suture + ApGltn sheet, single suture + fibrin glue, single suture, ApGltn sheet and fibrin. Maximum failure loads were measured (20 nerves each). Rat sciatic nerves were repaired with double suture, single suture + ApGltn sheet, single suture, ApGltn sheet, fibrin glue and resection (10 nerves each). Macroscopic appearance, muscle weight and histopathological findings were examined 8 weeks postoperatively. The mean failure load of ApGltn sheet (0.39 N) was significantly higher than that of a fibrin (0.05 N), and that of single suture + ApGltn sheet (1.32 N) was significantly higher than that of a single suture alone (0.97 N). Functional and histological assessments showed similar nerve recovery among the suture, ApGltn and fibrin groups. ApGltn sheet has potential for clinical application as an alternative to fibrin.