scX: a user-friendly tool for scRNAseq exploration.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-05-02 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae062
Tomás V Waichman, M L Vercesi, Ariel A Berardino, Maximiliano S Beckel, Damiana Giacomini, Natalí B Rasetto, Magalí Herrero, Daniela J Di Bella, Paola Arlotta, Alejandro F Schinder, Ariel Chernomoretz
{"title":"scX: a user-friendly tool for scRNAseq exploration.","authors":"Tomás V Waichman, M L Vercesi, Ariel A Berardino, Maximiliano S Beckel, Damiana Giacomini, Natalí B Rasetto, Magalí Herrero, Daniela J Di Bella, Paola Arlotta, Alejandro F Schinder, Ariel Chernomoretz","doi":"10.1093/bioadv/vbae062","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data.</p><p><strong>Results: </strong>In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.</p><p><strong>Availability and implementation: </strong>Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data.

Results: In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.

Availability and implementation: Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.

scX:用于探索 scRNAseq 的用户友好型工具。
动机单细胞 RNA 测序(scRNAseq)改变了我们探索生物系统的能力。然而,熟练的专业知识对于处理和解释数据至关重要:在本文中,我们介绍了基于 Shiny 框架的 R 软件包 scX,它能简化单细胞实验的分析、探索和可视化。scX 采用交互式图形界面,以网络应用程序的形式实现,可轻松访问关键的 scRNAseq 分析,包括标记物鉴定、基因表达谱分析和差异基因表达分析。此外,scX 还能与常用的单细胞 Seurat 和 SingleCellExperiment R 对象无缝集成,从而实现各种数据集的高效处理和可视化。总之,scX 是一种有价值的用户友好型工具,可用于轻松探索和共享单细胞数据,简化了 scRNAseq 分析中固有的一些复杂性:源代码可从 https://github.com/chernolabs/scX 下载。可从 dockerhub 获取 docker 映像,即 chernolabs/scx。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信