Bioplausible Unsupervised Delay Learning for Extracting Spatiotemporal Features in Spiking Neural Networks

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alireza Nadafian;Mohammad Ganjtabesh
{"title":"Bioplausible Unsupervised Delay Learning for Extracting Spatiotemporal Features in Spiking Neural Networks","authors":"Alireza Nadafian;Mohammad Ganjtabesh","doi":"10.1162/neco_a_01674","DOIUrl":null,"url":null,"abstract":"The plasticity of the conduction delay between neurons plays a fundamental role in learning temporal features that are essential for processing videos, speech, and many high-level functions. However, the exact underlying mechanisms in the brain for this modulation are still under investigation. Devising a rule for precisely adjusting the synaptic delays could eventually help in developing more efficient and powerful brain-inspired computational models. In this article, we propose an unsupervised bioplausible learning rule for adjusting the synaptic delays in spiking neural networks. We also provide the mathematical proofs to show the convergence of our rule in learning spatiotemporal patterns. Furthermore, to show the effectiveness of our learning rule, we conducted several experiments on random dot kinematogram and a subset of DVS128 Gesture data sets. The experimental results indicate the efficiency of applying our proposed delay learning rule in extracting spatiotemporal features in an STDP-based spiking neural network.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 7","pages":"1332-1352"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10661264/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The plasticity of the conduction delay between neurons plays a fundamental role in learning temporal features that are essential for processing videos, speech, and many high-level functions. However, the exact underlying mechanisms in the brain for this modulation are still under investigation. Devising a rule for precisely adjusting the synaptic delays could eventually help in developing more efficient and powerful brain-inspired computational models. In this article, we propose an unsupervised bioplausible learning rule for adjusting the synaptic delays in spiking neural networks. We also provide the mathematical proofs to show the convergence of our rule in learning spatiotemporal patterns. Furthermore, to show the effectiveness of our learning rule, we conducted several experiments on random dot kinematogram and a subset of DVS128 Gesture data sets. The experimental results indicate the efficiency of applying our proposed delay learning rule in extracting spatiotemporal features in an STDP-based spiking neural network.
在尖峰神经网络中提取时空特征的生物无监督延迟学习
神经元之间传导延迟的可塑性在学习时间特征方面起着根本性的作用,而时间特征对于处理视频、语音和许多高级功能至关重要。然而,这种调节在大脑中的确切潜在机制仍在研究之中。设计一种规则来精确调整突触延迟,最终将有助于开发更高效、更强大的大脑启发计算模型。在本文中,我们提出了一种用于调整尖峰神经网络中突触延迟的无监督生物可学习规则。我们还提供了数学证明,展示了我们的规则在学习时空模式时的收敛性。此外,为了证明我们的学习规则的有效性,我们在随机点运动图和 DVS128 手势数据集子集上进行了多次实验。实验结果表明,在基于 STDP 的尖峰神经网络中应用我们提出的延迟学习规则提取时空特征非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信