{"title":"Signal points allocation for generalized enhanced spatial modulation","authors":"Ling Yin, Guang Zeng, Qingwen Long","doi":"10.1002/ett.4984","DOIUrl":null,"url":null,"abstract":"<p>In this paper, making full use of the spatial domain of transmit antennas (TAs) and keeping the characteristic of the squared minimum Euclidean distance (MED) between the transmitted spatial vectors (TSVs), generalized enhanced spatial modulation with signal points allocation (GESM-SPA) is proposed to expand the size of signal spaces for enhancing the spectral efficiency and the reliability of communications. In the GESM-SPA, according to the number of active TAs, signal constellation points (CPs) from the QAM or secondary QAM constellations are allocated and then modulated on the corresponding active TAs with the selected antenna index (AI) vector. Through this design, which further exploits the spatial domain with the variability of active TAs, the squared MED between the TSVs is increased in comparison with the existing traditional systems. More specifically, in view of the disadvantage of the classic ESM system, the constellation groups (CGs) with priority given to the QAM CPs are constructed to further maximize the squared MED. Then, the AI vector subsets corresponding to the obtained CGs are designed to be candidate for the specified AI vector set with the AI information. The squared MED and the average bit error probability (BEP) are analyzed. In simulation results using Monte Carlo, the GESM-SPA outperforms the existing classic systems in terms of the bit error rate performance.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.4984","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, making full use of the spatial domain of transmit antennas (TAs) and keeping the characteristic of the squared minimum Euclidean distance (MED) between the transmitted spatial vectors (TSVs), generalized enhanced spatial modulation with signal points allocation (GESM-SPA) is proposed to expand the size of signal spaces for enhancing the spectral efficiency and the reliability of communications. In the GESM-SPA, according to the number of active TAs, signal constellation points (CPs) from the QAM or secondary QAM constellations are allocated and then modulated on the corresponding active TAs with the selected antenna index (AI) vector. Through this design, which further exploits the spatial domain with the variability of active TAs, the squared MED between the TSVs is increased in comparison with the existing traditional systems. More specifically, in view of the disadvantage of the classic ESM system, the constellation groups (CGs) with priority given to the QAM CPs are constructed to further maximize the squared MED. Then, the AI vector subsets corresponding to the obtained CGs are designed to be candidate for the specified AI vector set with the AI information. The squared MED and the average bit error probability (BEP) are analyzed. In simulation results using Monte Carlo, the GESM-SPA outperforms the existing classic systems in terms of the bit error rate performance.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications