A cross-attention augmented model for event-triggered context-aware story generation

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chen Tang , Tyler Loakman , Chenghua Lin
{"title":"A cross-attention augmented model for event-triggered context-aware story generation","authors":"Chen Tang ,&nbsp;Tyler Loakman ,&nbsp;Chenghua Lin","doi":"10.1016/j.csl.2024.101662","DOIUrl":null,"url":null,"abstract":"<div><p>Despite recent advancements, existing story generation systems continue to encounter difficulties in effectively incorporating contextual and event features, which greatly influence the quality of generated narratives. To tackle these challenges, we introduce a novel neural generation model, EtriCA, that enhances the relevance and coherence of generated stories by employing a cross-attention mechanism to map context features onto event sequences through residual mapping. This feature capturing mechanism enables our model to exploit logical relationships between events more effectively during the story generation process. To further enhance our proposed model, we employ a post-training framework for knowledge enhancement (KeEtriCA) on a large-scale book corpus. This allows EtriCA to adapt to a wider range of data samples. This results in approximately 5% improvement in automatic metrics and over 10% improvement in human evaluation. We conduct extensive experiments, including comparisons with state-of-the-art (SOTA) baseline models, to evaluate the performance of our framework on story generation. The experimental results, encompassing both automated metrics and human assessments, demonstrate the superiority of our model over existing state-of-the-art baselines. These results underscore the effectiveness of our model in leveraging context and event features to improve the quality of generated narratives.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"88 ","pages":"Article 101662"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000457/pdfft?md5=6b2981aa01c6fa0779df7e400f7d036a&pid=1-s2.0-S0885230824000457-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000457","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Despite recent advancements, existing story generation systems continue to encounter difficulties in effectively incorporating contextual and event features, which greatly influence the quality of generated narratives. To tackle these challenges, we introduce a novel neural generation model, EtriCA, that enhances the relevance and coherence of generated stories by employing a cross-attention mechanism to map context features onto event sequences through residual mapping. This feature capturing mechanism enables our model to exploit logical relationships between events more effectively during the story generation process. To further enhance our proposed model, we employ a post-training framework for knowledge enhancement (KeEtriCA) on a large-scale book corpus. This allows EtriCA to adapt to a wider range of data samples. This results in approximately 5% improvement in automatic metrics and over 10% improvement in human evaluation. We conduct extensive experiments, including comparisons with state-of-the-art (SOTA) baseline models, to evaluate the performance of our framework on story generation. The experimental results, encompassing both automated metrics and human assessments, demonstrate the superiority of our model over existing state-of-the-art baselines. These results underscore the effectiveness of our model in leveraging context and event features to improve the quality of generated narratives.

事件触发情境感知故事生成的交叉注意力增强模型
尽管最近取得了一些进步,但现有的故事生成系统在有效结合上下文和事件特征方面仍然遇到困难,而这些特征会极大地影响所生成的叙述的质量。为了应对这些挑战,我们引入了一种新颖的神经生成模型--EtriCA,该模型采用交叉注意机制,通过残差映射将上下文特征映射到事件序列上,从而增强了生成故事的相关性和连贯性。这种特征捕捉机制使我们的模型能够在故事生成过程中更有效地利用事件之间的逻辑关系。为了进一步增强我们提出的模型,我们在大规模图书语料库上采用了知识增强后训练框架(KeEtriCA)。这使得 EtriCA 能够适应更广泛的数据样本。这使得自动指标提高了约 5%,人工评估提高了超过 10%。我们进行了广泛的实验,包括与最先进的(SOTA)基线模型进行比较,以评估我们的框架在故事生成方面的性能。实验结果(包括自动指标和人工评估)表明,我们的模型优于现有的最先进基线模型。这些结果凸显了我们的模型在利用上下文和事件特征提高故事生成质量方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信