María Turos-Cabal, Ana M. Sánchez-Sánchez, Noelia Puente-Moncada, Federico Herrera, Isaac Antolin, Carmen Rodríguez, Vanesa Martín
{"title":"FLT3-ITD regulation of the endoplasmic reticulum functions in acute myeloid leukemia","authors":"María Turos-Cabal, Ana M. Sánchez-Sánchez, Noelia Puente-Moncada, Federico Herrera, Isaac Antolin, Carmen Rodríguez, Vanesa Martín","doi":"10.1002/hon.3281","DOIUrl":null,"url":null,"abstract":"<p>The FLT3-ITD mutation represents the most frequent genetic alteration in newly diagnosed acute myeloid leukemia (AML) patient and is associated with poor prognosis. Mutation result in the retention of a constitutively active form of this receptor in the endoplasmic reticulum (ER) and the subsequent modification of its downstream effectors. Here, we assessed the impact of such retention on ER homeostasis and found that mutant cells present lower levels of ER stress due to the overexpression of ERO1α, one of the main proteins of the protein folding machinery at the ER. Overexpression of ERO1α resulted essential for ITD mutant cells survival and chemoresistance and also played a crucial role in shaping the type of glucose metabolism in AML cells, being the mitochondrial pathway the predominant one in those with a higher ER stress (non-mutated cells) and the glycolytic pathway the predominant one in those with lower ER stress (mutated cells). Our data indicate that FLT3 mutational status dictates the route for glucose metabolism in an ERO1α depending on manner and this provides a survival advantage to tumors carrying these ITD mutations.</p>","PeriodicalId":12882,"journal":{"name":"Hematological Oncology","volume":"42 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hon.3281","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematological Oncology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hon.3281","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The FLT3-ITD mutation represents the most frequent genetic alteration in newly diagnosed acute myeloid leukemia (AML) patient and is associated with poor prognosis. Mutation result in the retention of a constitutively active form of this receptor in the endoplasmic reticulum (ER) and the subsequent modification of its downstream effectors. Here, we assessed the impact of such retention on ER homeostasis and found that mutant cells present lower levels of ER stress due to the overexpression of ERO1α, one of the main proteins of the protein folding machinery at the ER. Overexpression of ERO1α resulted essential for ITD mutant cells survival and chemoresistance and also played a crucial role in shaping the type of glucose metabolism in AML cells, being the mitochondrial pathway the predominant one in those with a higher ER stress (non-mutated cells) and the glycolytic pathway the predominant one in those with lower ER stress (mutated cells). Our data indicate that FLT3 mutational status dictates the route for glucose metabolism in an ERO1α depending on manner and this provides a survival advantage to tumors carrying these ITD mutations.
期刊介绍:
Hematological Oncology considers for publication articles dealing with experimental and clinical aspects of neoplastic diseases of the hemopoietic and lymphoid systems and relevant related matters. Translational studies applying basic science to clinical issues are particularly welcomed. Manuscripts dealing with the following areas are encouraged:
-Clinical practice and management of hematological neoplasia, including: acute and chronic leukemias, malignant lymphomas, myeloproliferative disorders
-Diagnostic investigations, including imaging and laboratory assays
-Epidemiology, pathology and pathobiology of hematological neoplasia of hematological diseases
-Therapeutic issues including Phase 1, 2 or 3 trials as well as allogeneic and autologous stem cell transplantation studies
-Aspects of the cell biology, molecular biology, molecular genetics and cytogenetics of normal or diseased hematopoeisis and lymphopoiesis, including stem cells and cytokines and other regulatory systems.
Concise, topical review material is welcomed, especially if it makes new concepts and ideas accessible to a wider community. Proposals for review material may be discussed with the Editor-in-Chief. Collections of case material and case reports will be considered only if they have broader scientific or clinical relevance.