Optimal Approximation of Unique Continuation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Erik Burman, Mihai Nechita, Lauri Oksanen
{"title":"Optimal Approximation of Unique Continuation","authors":"Erik Burman, Mihai Nechita, Lauri Oksanen","doi":"10.1007/s10208-024-09655-w","DOIUrl":null,"url":null,"abstract":"<p>We consider numerical approximations of ill-posed elliptic problems with conditional stability. The notion of <i>optimal error estimates</i> is defined including both convergence with respect to discretisation and perturbations in data. The rate of convergence is determined by the conditional stability of the underlying continuous problem and the polynomial order of the approximation space. A proof is given that no approximation can converge at a better rate than that given by the definition without increasing the sensitivity to perturbations, thus justifying the concept. A recently introduced class of primal-dual finite element methods with weakly consistent regularisation is recalled and the associated error estimates are shown to be optimal in the sense of this definition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09655-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider numerical approximations of ill-posed elliptic problems with conditional stability. The notion of optimal error estimates is defined including both convergence with respect to discretisation and perturbations in data. The rate of convergence is determined by the conditional stability of the underlying continuous problem and the polynomial order of the approximation space. A proof is given that no approximation can converge at a better rate than that given by the definition without increasing the sensitivity to perturbations, thus justifying the concept. A recently introduced class of primal-dual finite element methods with weakly consistent regularisation is recalled and the associated error estimates are shown to be optimal in the sense of this definition.

唯一连续性的最佳近似值
我们考虑了具有条件稳定性的问题椭圆的数值近似。最佳误差估计的概念包括离散化收敛和数据扰动。收敛速率由基本连续问题的条件稳定性和近似空间的多项式阶数决定。有证据表明,在不增加对扰动的敏感性的情况下,任何近似方法的收敛速度都不可能优于定义所给出的收敛速度,从而证明了这一概念的合理性。回顾了最近引入的一类具有弱一致正则化的原始双有限元方法,并证明了相关误差估计在该定义的意义上是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信