Principal curves to fractional m-Laplacian systems and related maximum and comparison principles

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anderson L. A. de Araujo, Edir J. F. Leite, Aldo H. S. Medeiros
{"title":"Principal curves to fractional m-Laplacian systems and related maximum and comparison principles","authors":"Anderson L. A. de Araujo, Edir J. F. Leite, Aldo H. S. Medeiros","doi":"10.1007/s13540-024-00293-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional <i>m</i>-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain <span>\\(\\varOmega \\subset {\\mathbb {R}}^N\\)</span> are also proved. As application, we measure explicitly how small has to be <span>\\(\\text {diam}(\\varOmega )\\)</span> so that weak and strong maximum principles associated to this problem hold in <span>\\(\\varOmega \\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00293-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain \(\varOmega \subset {\mathbb {R}}^N\) are also proved. As application, we measure explicitly how small has to be \(\text {diam}(\varOmega )\) so that weak and strong maximum principles associated to this problem hold in \(\varOmega \).

Abstract Image

分数 m-Laplacian 系统的主曲线及相关的最大值和比较原则
在本文中,我们对涉及分数 m-Laplacian 算子的一类重要非线性系统的主特征值以及(弱和强)最大值和比较原则进行了全面研究。我们还证明了该系统的主特征值在有界域 \(\varOmega \subset {\mathbb {R}}^N\) 的直径方面的明确下限。作为应用,我们明确地测量了 \(\text {diam}(\varOmega )\) 必须有多小才能使与这个问题相关的弱最大原则和强最大原则在 \(\varOmega \) 中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信