Anderson L. A. de Araujo, Edir J. F. Leite, Aldo H. S. Medeiros
{"title":"Principal curves to fractional m-Laplacian systems and related maximum and comparison principles","authors":"Anderson L. A. de Araujo, Edir J. F. Leite, Aldo H. S. Medeiros","doi":"10.1007/s13540-024-00293-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional <i>m</i>-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain <span>\\(\\varOmega \\subset {\\mathbb {R}}^N\\)</span> are also proved. As application, we measure explicitly how small has to be <span>\\(\\text {diam}(\\varOmega )\\)</span> so that weak and strong maximum principles associated to this problem hold in <span>\\(\\varOmega \\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00293-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain \(\varOmega \subset {\mathbb {R}}^N\) are also proved. As application, we measure explicitly how small has to be \(\text {diam}(\varOmega )\) so that weak and strong maximum principles associated to this problem hold in \(\varOmega \).