A continuous 2011–2022 record of fine particulate matter (PM2.5) in East Asia at daily 2-km resolution from geostationary satellite observations: population exposure and long-term trends

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Drew C. Pendergrass, Daniel J. Jacob, Yujin J. Oak, Jeewoo Lee, Minseok Kim, Jhoon Kim, Seoyoung Lee, Shixian Zhai, Hitoshi Irie, Hong Liao
{"title":"A continuous 2011–2022 record of fine particulate matter (PM2.5) in East Asia at daily 2-km resolution from geostationary satellite observations: population exposure and long-term trends","authors":"Drew C. Pendergrass, Daniel J. Jacob, Yujin J. Oak, Jeewoo Lee, Minseok Kim, Jhoon Kim, Seoyoung Lee, Shixian Zhai, Hitoshi Irie, Hong Liao","doi":"10.5194/essd-2024-172","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> We construct a continuous 24-h daily fine particulate matter (PM<sub>2.5</sub>)<sup> </sup>record with 2×2 km<sup>2</sup> resolution over eastern China, South Korea, and Japan for 2011–2022 by applying a random forest (RF) algorithm to aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) I and II satellite instruments. The RF uses PM<sub>2.5</sub> observations from the national surface networks as training data. PM<sub>2.5</sub> network data starting in 2015 in South Korea are extended to pre-2015 with a RF trained on other air quality data available from the network including PM<sub>10</sub>. PM<sub>2.5</sub> network data starting in 2014 in China are supplemented by pre-2014 data from the US embassy and consulates. Missing AODs in the GOCI data are gap-filled by a separate RF fit. We show that the resulting GOCI PM<sub>2.5</sub> dataset is successful in reproducing the surface network observations including extreme events, and that the network data in the different countries are representative of population-weighted exposure. We find that PM<sub>2.5</sub> peaked in 2014 (China) and 2013 (South Korea, Japan), and has been decreasing steadily since with no region left behind. We quantify the population in each country exposed to annual PM<sub>2.5</sub> in excess of national ambient air quality standards and how this exposure evolves with time. The long record for the Seoul Metropolitan Area (SMA) shows a steady decrease from 2013 to 2022 that was not present in the first five years of AirKorea network PM<sub>2.5</sub> measurements. Mapping of an extreme pollution event in Seoul with GOCI PM<sub>2.5</sub> shows a predicted distribution indistinguishable from the dense urban network observations, while our previous 6×6 km<sup>2</sup> product smoothed local features. Our product should be useful for public health studies where long-term spatial continuity of PM<sub>2.5</sub> information is essential.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-172","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We construct a continuous 24-h daily fine particulate matter (PM2.5) record with 2×2 km2 resolution over eastern China, South Korea, and Japan for 2011–2022 by applying a random forest (RF) algorithm to aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) I and II satellite instruments. The RF uses PM2.5 observations from the national surface networks as training data. PM2.5 network data starting in 2015 in South Korea are extended to pre-2015 with a RF trained on other air quality data available from the network including PM10. PM2.5 network data starting in 2014 in China are supplemented by pre-2014 data from the US embassy and consulates. Missing AODs in the GOCI data are gap-filled by a separate RF fit. We show that the resulting GOCI PM2.5 dataset is successful in reproducing the surface network observations including extreme events, and that the network data in the different countries are representative of population-weighted exposure. We find that PM2.5 peaked in 2014 (China) and 2013 (South Korea, Japan), and has been decreasing steadily since with no region left behind. We quantify the population in each country exposed to annual PM2.5 in excess of national ambient air quality standards and how this exposure evolves with time. The long record for the Seoul Metropolitan Area (SMA) shows a steady decrease from 2013 to 2022 that was not present in the first five years of AirKorea network PM2.5 measurements. Mapping of an extreme pollution event in Seoul with GOCI PM2.5 shows a predicted distribution indistinguishable from the dense urban network observations, while our previous 6×6 km2 product smoothed local features. Our product should be useful for public health studies where long-term spatial continuity of PM2.5 information is essential.
地球静止卫星观测提供的 2011-2022 年东亚每日 2 公里分辨率细颗粒物(PM2.5)连续记录:人口接触情况和长期趋势
摘要通过对地球静止海洋色彩成像仪(GOCI)I和II卫星仪器的气溶胶光学深度(AOD)观测数据应用随机森林(RF)算法,我们构建了2011-2022年中国东部、韩国和日本上空2×2平方公里分辨率的连续24小时细颗粒物(PM2.5)日记录。随机森林算法使用国家地表网络的 PM2.5 观测数据作为训练数据。韩国从 2015 年开始的 PM2.5 网络数据被扩展到 2015 年之前,射频利用网络提供的其他空气质量数据(包括 PM10)进行训练。中国从 2014 年开始的 PM2.5 网络数据由美国大使馆和领事馆提供的 2014 年之前的数据进行补充。GOCI 数据中缺失的 AOD 将通过单独的射频拟合来填补。我们的研究表明,由此产生的 GOCI PM2.5 数据集成功地再现了包括极端事件在内的地面网络观测数据,而且不同国家的网络数据对人口加权暴露具有代表性。我们发现,PM2.5 在 2014 年(中国)和 2013 年(韩国、日本)达到峰值,此后一直在稳步下降,没有一个地区掉队。我们量化了每个国家每年暴露于超过国家环境空气质量标准的 PM2.5 的人口数量,以及这种暴露量是如何随时间变化的。首尔首都圈(SMA)的长期记录显示,从2013年到2022年,该地区的PM2.5持续下降,而在韩国空气网PM2.5测量的头五年,这一现象并不存在。利用GOCI PM2.5绘制的首尔极端污染事件图显示,预测的分布与密集的城市网络观测结果无异,而我们之前的6×6平方公里产品对局部特征进行了平滑处理。我们的产品对公共卫生研究应该很有用,因为在公共卫生研究中,PM2.5 信息的长期空间连续性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信