Hailey Wilmer , Daniel B. Ferguson , Maude Dinan , Eric Thacker , Peter B. Adler , Kathryn Bills Walsh , John B. Bradford , Mark Brunson , Justin D. Derner , Emile Elias , Andrew Felton , Curtis A. Gray , Christina Greene , Mitchel P. McClaran , Robert K. Shriver , Mitch Stephenson , Katharine Nash Suding
{"title":"Resilience Is Not Enough: Toward a More Meaningful Rangeland Adaptation Science","authors":"Hailey Wilmer , Daniel B. Ferguson , Maude Dinan , Eric Thacker , Peter B. Adler , Kathryn Bills Walsh , John B. Bradford , Mark Brunson , Justin D. Derner , Emile Elias , Andrew Felton , Curtis A. Gray , Christina Greene , Mitchel P. McClaran , Robert K. Shriver , Mitch Stephenson , Katharine Nash Suding","doi":"10.1016/j.rama.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Rangeland ecosystems, and their managers, face the growing urgency of climate change impacts. Researchers are therefore seeking integrative social-ecological frameworks that can enhance adaptation by managers to these climate change dynamics through tighter linkages among multiple scientific disciplines and manager contexts. Social-ecological framings, including resilience and vulnerability, are popular in such efforts, but their potential to inform meaningful rangeland adaptation science is limited by traditional disciplinary silos. Here, we provide reflective lessons learned from a multidisciplinary Rangelands, Ranching, and Resilience (R3) project on U.S. western rangelands that addressed 1) biophysical science projections of forage production under future climate scenarios, 2) ranchers’ views of resilience using social science methods, and 3) outreach efforts coordinated through extension professionals. Despite the project's initial intentions, human dimensions and ecological researchers largely worked in parallel sub-teams during the project, rather than weaving their expertise together with managers. The R3 project was multidisciplinary, but it provides a case study on lessons learned to suggest how social and ecological researchers can move towards approaches that transcend individual disciplines. Transdisciplinary science and management in rangelands requires more than just conceptual social-ecological frameworks. Additional methodological concepts need to include: 1) relationship building; 2) shared meaning making; and 3) a commitment to continual conversations and learning, or staying with the trouble, following Haraway (2016). If the goal is to address meaningful rangeland adaptation science rather than just produce academic products, researchers, outreach professionals, and rangeland-based communities should address a series of critical troubling questions. In the process of addressing these, deeper engagement among and beyond disciplines will occur as relationship building, shared meaning, and continual conversations and learning facilitate staying with the trouble.</p></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":"95 ","pages":"Pages 56-67"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742424000551","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rangeland ecosystems, and their managers, face the growing urgency of climate change impacts. Researchers are therefore seeking integrative social-ecological frameworks that can enhance adaptation by managers to these climate change dynamics through tighter linkages among multiple scientific disciplines and manager contexts. Social-ecological framings, including resilience and vulnerability, are popular in such efforts, but their potential to inform meaningful rangeland adaptation science is limited by traditional disciplinary silos. Here, we provide reflective lessons learned from a multidisciplinary Rangelands, Ranching, and Resilience (R3) project on U.S. western rangelands that addressed 1) biophysical science projections of forage production under future climate scenarios, 2) ranchers’ views of resilience using social science methods, and 3) outreach efforts coordinated through extension professionals. Despite the project's initial intentions, human dimensions and ecological researchers largely worked in parallel sub-teams during the project, rather than weaving their expertise together with managers. The R3 project was multidisciplinary, but it provides a case study on lessons learned to suggest how social and ecological researchers can move towards approaches that transcend individual disciplines. Transdisciplinary science and management in rangelands requires more than just conceptual social-ecological frameworks. Additional methodological concepts need to include: 1) relationship building; 2) shared meaning making; and 3) a commitment to continual conversations and learning, or staying with the trouble, following Haraway (2016). If the goal is to address meaningful rangeland adaptation science rather than just produce academic products, researchers, outreach professionals, and rangeland-based communities should address a series of critical troubling questions. In the process of addressing these, deeper engagement among and beyond disciplines will occur as relationship building, shared meaning, and continual conversations and learning facilitate staying with the trouble.
期刊介绍:
Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes.
Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.