{"title":"UKLF/PCBP2 axis governs the colorectal cancer development by transcriptionally activating SLC39A4","authors":"Yunze Li, Lina Liu","doi":"10.1016/j.bbamcr.2024.119755","DOIUrl":null,"url":null,"abstract":"<div><p>Colorectal cancer (CRC) is one of the most prevalent malignant tumors with limited treatment options. Therefore, there is an urgent need to investigate new therapeutic targets against CRC. Ubiquitous Kruppel-like factor (UKLF) is involved in various cancer processes, but its effect and detailed molecular mechanism in CRC are not yet fully understood. Here, this study aimed to investigate the function and mechanism of UKLF in the development of CRC. The results showed that UKLF was highly expressed in CRC tissues from clinical patients and its high expression was related to poor prognosis. UKLF promoted cell proliferation, migration and invasion, and inhibited cell apoptosis. The promotion effect of UKLF on tumor growth was further confirmed in vivo. As far as the mechanism was concerned, poly (C) binding protein 2 (PCBP2) was verified to bind to the 3′-UTR of UKLF mRNA and enhance its mRNA stability. Moreover, UKLF modulated the expression of solute carrier family 39 member 4 (SLC39A4) at the transcriptional level. Taken together, these findings elucidated the regulatory mechanism of UKLF and uncovered the importance of the PCBP2/UKLF/SLC39A4 pathway. The targeting of UKLF may be a novel direction for molecular-targeted CRC therapy.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924000983","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors with limited treatment options. Therefore, there is an urgent need to investigate new therapeutic targets against CRC. Ubiquitous Kruppel-like factor (UKLF) is involved in various cancer processes, but its effect and detailed molecular mechanism in CRC are not yet fully understood. Here, this study aimed to investigate the function and mechanism of UKLF in the development of CRC. The results showed that UKLF was highly expressed in CRC tissues from clinical patients and its high expression was related to poor prognosis. UKLF promoted cell proliferation, migration and invasion, and inhibited cell apoptosis. The promotion effect of UKLF on tumor growth was further confirmed in vivo. As far as the mechanism was concerned, poly (C) binding protein 2 (PCBP2) was verified to bind to the 3′-UTR of UKLF mRNA and enhance its mRNA stability. Moreover, UKLF modulated the expression of solute carrier family 39 member 4 (SLC39A4) at the transcriptional level. Taken together, these findings elucidated the regulatory mechanism of UKLF and uncovered the importance of the PCBP2/UKLF/SLC39A4 pathway. The targeting of UKLF may be a novel direction for molecular-targeted CRC therapy.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.