Sentiment and time-series analysis of direct-message conversations

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Martyn Harris, Jessica Jacobson, Alessandro Provetti
{"title":"Sentiment and time-series analysis of direct-message conversations","authors":"Martyn Harris,&nbsp;Jessica Jacobson,&nbsp;Alessandro Provetti","doi":"10.1016/j.fsidi.2024.301753","DOIUrl":null,"url":null,"abstract":"<div><p>Social media and mobile communications in general are an extremely rich source of digital forensic information. We present our new framework for analysing this resource with an innovative combination of time series and text mining methods. The framework is intended to create a tool to analyse and operationally summarise extended trails of social media messages, thus enabling investigators for the first time to drill down into specific moments at which sentiment analysis has detected a change of tone indicative of a particularly strong and significant response. Crucially, the method will give investigators an opportunity to reduce the time and resource commitment required for ongoing and hands-on analysis of digital communications on media such as Texts/SMS, WhatsApp and Messenger.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281724000726/pdfft?md5=f20b9f2665013212a0a6b432cbde19ac&pid=1-s2.0-S2666281724000726-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281724000726","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Social media and mobile communications in general are an extremely rich source of digital forensic information. We present our new framework for analysing this resource with an innovative combination of time series and text mining methods. The framework is intended to create a tool to analyse and operationally summarise extended trails of social media messages, thus enabling investigators for the first time to drill down into specific moments at which sentiment analysis has detected a change of tone indicative of a particularly strong and significant response. Crucially, the method will give investigators an opportunity to reduce the time and resource commitment required for ongoing and hands-on analysis of digital communications on media such as Texts/SMS, WhatsApp and Messenger.

直接信息对话的情感和时间序列分析
社交媒体和移动通信是数字取证信息的一个极其丰富的来源。我们将时间序列和文本挖掘方法创新性地结合起来,提出了分析这一资源的新框架。该框架旨在创建一种工具,对社交媒体信息的扩展轨迹进行分析和操作性总结,从而使调查人员能够首次深入到情感分析检测到语气变化的特定时刻,这种语气变化表明了特别强烈和重要的反应。最重要的是,该方法将使调查人员有机会减少对短信/彩信、WhatsApp 和 Messenger 等媒体上的数字通信进行持续和实际分析所需的时间和资源投入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信