Root extraction in finite Abelian groups

Udvas Acharjee, M.S. Srinath
{"title":"Root extraction in finite Abelian groups","authors":"Udvas Acharjee,&nbsp;M.S. Srinath","doi":"10.1016/j.jaca.2024.100017","DOIUrl":null,"url":null,"abstract":"<div><p>We formulate the <em>Root Extraction problem</em> in finite Abelian <em>p</em>-groups and then extend it to generic finite Abelian groups. We provide algorithms to solve them. We also give the bounds on the number of group operations required for these algorithms. We observe that once a basis is computed and the discrete logarithm relative to the basis is solved, root extraction takes relatively fewer “bookkeeping” steps. Thus, we conclude that root extraction in finite Abelian groups is <em>no harder</em> than solving discrete logarithms and computing basis.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"10 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277282772400007X/pdfft?md5=37c8cf927839f6d23b63dec45ccc0073&pid=1-s2.0-S277282772400007X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277282772400007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate the Root Extraction problem in finite Abelian p-groups and then extend it to generic finite Abelian groups. We provide algorithms to solve them. We also give the bounds on the number of group operations required for these algorithms. We observe that once a basis is computed and the discrete logarithm relative to the basis is solved, root extraction takes relatively fewer “bookkeeping” steps. Thus, we conclude that root extraction in finite Abelian groups is no harder than solving discrete logarithms and computing basis.

有限阿贝尔群的根提取
我们提出了有限阿贝尔 p 群中的根提取问题,然后将其扩展到一般有限阿贝尔群。我们提供了解决这些问题的算法。我们还给出了这些算法所需的群运算次数的边界。我们发现,一旦计算出一个基,并求解出相对于基的离散对数,根提取所需的 "簿记 "步骤就会相对减少。因此,我们得出结论:有限阿贝尔群中的根提取并不比求解离散对数和计算基数难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信