Inverting the sum of two singular matrices

IF 1.4 Q2 MATHEMATICS, APPLIED
Sofia Eriksson, Jonas Nordqvist
{"title":"Inverting the sum of two singular matrices","authors":"Sofia Eriksson,&nbsp;Jonas Nordqvist","doi":"10.1016/j.rinam.2024.100463","DOIUrl":null,"url":null,"abstract":"<div><p>Square matrices of the form <span><math><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mi>A</mi><mo>+</mo><mi>e</mi><mi>D</mi><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> are considered. An explicit expression for the inverse is given, provided <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><mi>D</mi></math></span> are invertible with <span><math><mrow><mo>rank</mo><mrow><mo>(</mo><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow><mo>=</mo><mo>rank</mo><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>+</mo><mo>rank</mo><mrow><mo>(</mo><mi>e</mi><mi>D</mi><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The inverse is presented in two ways, one that uses singular value decomposition and another that depends directly on the components <span><math><mi>A</mi></math></span>, <span><math><mi>e</mi></math></span>, <span><math><mi>f</mi></math></span> and <span><math><mi>D</mi></math></span>. Additionally, a matrix determinant lemma for singular matrices follows from the derivations.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100463"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000335/pdfft?md5=3f70fd7bea0c47b800f36d57f3105d96&pid=1-s2.0-S2590037424000335-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Square matrices of the form A˜=A+eDf are considered. An explicit expression for the inverse is given, provided A˜ and D are invertible with rank(A˜)=rank(A)+rank(eDf). The inverse is presented in two ways, one that uses singular value decomposition and another that depends directly on the components A, e, f and D. Additionally, a matrix determinant lemma for singular matrices follows from the derivations.

反转两个奇异矩阵之和
研究了形式为 A˜=A+eDf∗ 的正方形矩阵。只要 A˜ 和 D 是可逆的,秩(A˜)=秩(A)+秩(eDf∗),就能给出逆的明确表达式。求逆的方法有两种,一种是使用奇异值分解,另一种是直接取决于 A、e、f 和 D 的分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信