Rebecca A. Bova, Leyla Diaz, Scott Eubank, Amber Overgard, Alison Armstrong, Bradley Hasson
{"title":"Validation of a next generation sequencing method for adventitious virus detection: Demonstration of sensitivity in multiple cell lines","authors":"Rebecca A. Bova, Leyla Diaz, Scott Eubank, Amber Overgard, Alison Armstrong, Bradley Hasson","doi":"10.1016/j.biologicals.2024.101771","DOIUrl":null,"url":null,"abstract":"<div><p>In the past few years NGS has become the technology of choice to replace animal-based virus safety methods and this has been strengthened by the recent revision to the ICHQ5A virus safety chapter. Here we describe the validation of an NGS method using an agnostic analysis to detect and identify RNA virus and actively replicating DNA virus contaminants in cell banks. We report the results of the validation of each step in the sequencing process that established quality criteria to ensure consistent sequencing data. Furthermore, the validation of the analysis algorithm designed to identify virus specific sequences is described along with steps undertaken to ensure the integrity of the sequencing data from generation to analysis. Lastly, the validated sequencing and analysis systems were used to establish a limit of detection (LOD) for model viruses in cells that are commonly used in biomanufacturing. The LOD from these studies ranged from 1E+03 to 1E+04 genome copies and were dependent on the virus type with little variability between the different cell types. Thus, the validation of the NGS method for adventitious agent testing and the establishment of a general LOD for cell-based samples provides a suitable alternative to traditional virus detection methods.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1045105624000289/pdfft?md5=597f955402c554c0175fd90d4e780160&pid=1-s2.0-S1045105624000289-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045105624000289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the past few years NGS has become the technology of choice to replace animal-based virus safety methods and this has been strengthened by the recent revision to the ICHQ5A virus safety chapter. Here we describe the validation of an NGS method using an agnostic analysis to detect and identify RNA virus and actively replicating DNA virus contaminants in cell banks. We report the results of the validation of each step in the sequencing process that established quality criteria to ensure consistent sequencing data. Furthermore, the validation of the analysis algorithm designed to identify virus specific sequences is described along with steps undertaken to ensure the integrity of the sequencing data from generation to analysis. Lastly, the validated sequencing and analysis systems were used to establish a limit of detection (LOD) for model viruses in cells that are commonly used in biomanufacturing. The LOD from these studies ranged from 1E+03 to 1E+04 genome copies and were dependent on the virus type with little variability between the different cell types. Thus, the validation of the NGS method for adventitious agent testing and the establishment of a general LOD for cell-based samples provides a suitable alternative to traditional virus detection methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.