S Furkan Demirden, Barıs Erdogan, Deniz Şenyay Öncel, Suphi S Oncel
{"title":"Effect of culture hydrodynamics on Arthrospira platensis production using a single-use photobioreactor system through a CFD supported approach.","authors":"S Furkan Demirden, Barıs Erdogan, Deniz Şenyay Öncel, Suphi S Oncel","doi":"10.1002/btpr.3480","DOIUrl":null,"url":null,"abstract":"<p><p>Laboratory scale conventional single-use bioreactor was used to investigate the effect of different stirrer speeds on the Arthrospira platensis (Spirulina platensis) culture. Experiments were handled in two steps. First step was the selection of the stirring speeds, which was simulated via using CFD, and the second was the long term cultivation with the selected speed. During 10 days of batches as the first step, under identical culture conditions, stirrer speed of 230 rpm gave higher results, compared to 130 and 70 rpm, with respect to dry biomass weight, absorbance value (AB) and chlorophyll-a concentration. Volumetric productivity during the growth phase of the cultures were calculated as 0.39 ± 0.03, 0.28 ± 0.01, and 0.19 ± 0.02 g L<sup>-1</sup> d<sup>-1</sup>, from the fast to the slower speeds. According to the results a 17 day batch was handled with 230 rpm in order to monitor the effects on the culture. The culture reached a volumetric productivity of 0.33 ± 0.04 g L<sup>-1</sup> d<sup>-1</sup>. Statistical analysis showed the significance of the parameters related with the stirring speed.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3480","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laboratory scale conventional single-use bioreactor was used to investigate the effect of different stirrer speeds on the Arthrospira platensis (Spirulina platensis) culture. Experiments were handled in two steps. First step was the selection of the stirring speeds, which was simulated via using CFD, and the second was the long term cultivation with the selected speed. During 10 days of batches as the first step, under identical culture conditions, stirrer speed of 230 rpm gave higher results, compared to 130 and 70 rpm, with respect to dry biomass weight, absorbance value (AB) and chlorophyll-a concentration. Volumetric productivity during the growth phase of the cultures were calculated as 0.39 ± 0.03, 0.28 ± 0.01, and 0.19 ± 0.02 g L-1 d-1, from the fast to the slower speeds. According to the results a 17 day batch was handled with 230 rpm in order to monitor the effects on the culture. The culture reached a volumetric productivity of 0.33 ± 0.04 g L-1 d-1. Statistical analysis showed the significance of the parameters related with the stirring speed.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.