{"title":"Application of the Cellular Thermal Shift Assay (CETSA) to validate drug target engagement in platelets.","authors":"Joanna-Marie Howes, Matthew T Harper","doi":"10.1080/09537104.2024.2354833","DOIUrl":null,"url":null,"abstract":"<p><p>Small molecule drugs play a major role in the study of human platelets. Effective action of a drug requires it to bind to one or more targets within the platelet (target engagement). However, although <i>in vitro</i> assays with isolated proteins can be used to determine drug affinity to these targets, additional factors affect target engagement and its consequences in an intact platelet, including plasma membrane permeability, intracellular metabolism or compartmentalization, and level of target expression. Mechanistic interpretation of the effect of drugs on platelet activity requires comprehensive investigation of drug binding in the proper cellular context, i.e. in intact platelets. The Cellular Thermal Shift Assay (CETSA) is a valuable method to investigate target engagement within complex cellular environments. The assay is based on the principle that drug binding to a target protein increases that protein's thermal stability. In this technical report, we describe the application of CETSA to platelets. We highlight CETSA as a quick and informative technique for confirming the direct binding of drugs to platelet protein targets, providing a platform for understanding the mechanism of action of drugs in platelets, and which will be a valuable tool for investigating platelet signaling and function.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2024.2354833","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small molecule drugs play a major role in the study of human platelets. Effective action of a drug requires it to bind to one or more targets within the platelet (target engagement). However, although in vitro assays with isolated proteins can be used to determine drug affinity to these targets, additional factors affect target engagement and its consequences in an intact platelet, including plasma membrane permeability, intracellular metabolism or compartmentalization, and level of target expression. Mechanistic interpretation of the effect of drugs on platelet activity requires comprehensive investigation of drug binding in the proper cellular context, i.e. in intact platelets. The Cellular Thermal Shift Assay (CETSA) is a valuable method to investigate target engagement within complex cellular environments. The assay is based on the principle that drug binding to a target protein increases that protein's thermal stability. In this technical report, we describe the application of CETSA to platelets. We highlight CETSA as a quick and informative technique for confirming the direct binding of drugs to platelet protein targets, providing a platform for understanding the mechanism of action of drugs in platelets, and which will be a valuable tool for investigating platelet signaling and function.
期刊介绍:
Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research.
Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods.
Research areas include:
Platelet function
Biochemistry
Signal transduction
Pharmacology and therapeutics
Interaction with other cells in the blood vessel wall
The contribution of platelets and platelet-derived products to health and disease
The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor.
Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.