The impact of acemannan, an extracted product from Aloe vera, on proliferation of dental pulp stem cells and healing of mandibular defects in rabbits.

IF 1.5 Q4 CELL BIOLOGY
American journal of stem cells Pub Date : 2024-04-25 eCollection Date: 2024-01-01 DOI:10.62347/UAFC3719
Davood Mehrabani, Fatemeh Sholehvar, Parichehr Yaghmaei, Shahrokh Zare, Iman Razeghian-Jahromi, Reza Jalli, Marzieh Hamzavai, Golshid Mehrabani, Barbad Zamiri, Feridoun Karimi-Busheri
{"title":"The impact of acemannan, an extracted product from <i>Aloe vera</i>, on proliferation of dental pulp stem cells and healing of mandibular defects in rabbits.","authors":"Davood Mehrabani, Fatemeh Sholehvar, Parichehr Yaghmaei, Shahrokh Zare, Iman Razeghian-Jahromi, Reza Jalli, Marzieh Hamzavai, Golshid Mehrabani, Barbad Zamiri, Feridoun Karimi-Busheri","doi":"10.62347/UAFC3719","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Dental pulp stem cells (DPSCs) were shown to play an important role in regenerative medicine including reconstruction of various bone lesions. This study determined the impact of acemannan, an extracted product from <i>Aloe vera</i>, on <i>in vitro</i> proliferation of DPSCs and <i>in vivo</i> healing of mandibular defects in rabbits.</p><p><strong>Methods: </strong>DPSCs were isolated and characterized. The growth kinetics of cells exposed to acemannan (8 mg/mL) and Hank's balanced salt solution (HBSS) were compared <i>in vitro</i>. Fifteen male rabbits were divided into 3 groups. Five animals were left as control group without any therapeutic intervention. Five rabbits were considered as experimental group 1 and received 20 µL of a cell suspension containing 10<sup>6</sup> DPSCs in the bone defect. Another 5 rabbits were regarded as experimental group 2 and were injected in the bone defect with 20 µL of a cell suspension containing 10<sup>6</sup> DPSCs treated with acemannan for 24 h. After 60 days, the animals were assessed by radiography and histologically.</p><p><strong>Results: </strong>The mesenchymal properties of DPSCs were confirmed. Population doubling time (PDT) of DPSCs treated with acemannan (29.8 h) was significantly shorter than cells were just exposed to HBSS (45.9 h). DPSCs together with acemannan could significantly accelerate the healing process and osteogenesis in mandibular defects.</p><p><strong>Conclusions: </strong>As DPSCS showed an increased proliferation when treated with acemannan and accelerated the healing process in mandibular defects, these findings can open a new avenue in dentistry regenerative medicine when remedies of bone defects are targeted.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":"13 2","pages":"75-86"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of stem cells","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/UAFC3719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Dental pulp stem cells (DPSCs) were shown to play an important role in regenerative medicine including reconstruction of various bone lesions. This study determined the impact of acemannan, an extracted product from Aloe vera, on in vitro proliferation of DPSCs and in vivo healing of mandibular defects in rabbits.

Methods: DPSCs were isolated and characterized. The growth kinetics of cells exposed to acemannan (8 mg/mL) and Hank's balanced salt solution (HBSS) were compared in vitro. Fifteen male rabbits were divided into 3 groups. Five animals were left as control group without any therapeutic intervention. Five rabbits were considered as experimental group 1 and received 20 µL of a cell suspension containing 106 DPSCs in the bone defect. Another 5 rabbits were regarded as experimental group 2 and were injected in the bone defect with 20 µL of a cell suspension containing 106 DPSCs treated with acemannan for 24 h. After 60 days, the animals were assessed by radiography and histologically.

Results: The mesenchymal properties of DPSCs were confirmed. Population doubling time (PDT) of DPSCs treated with acemannan (29.8 h) was significantly shorter than cells were just exposed to HBSS (45.9 h). DPSCs together with acemannan could significantly accelerate the healing process and osteogenesis in mandibular defects.

Conclusions: As DPSCS showed an increased proliferation when treated with acemannan and accelerated the healing process in mandibular defects, these findings can open a new avenue in dentistry regenerative medicine when remedies of bone defects are targeted.

芦荟提取物 "cemannan "对兔子牙髓干细胞增殖和下颌骨缺损愈合的影响。
目的:牙髓干细胞(DPSCs)在再生医学(包括各种骨损伤的重建)中发挥着重要作用。本研究确定了芦荟提取物醋曼烷对 DPSCs 体外增殖和兔子下颌骨缺损体内愈合的影响:方法:分离并鉴定 DPSCs。方法:对分离出的 DPSCs 进行鉴定,并比较了暴露于醋曼烷(8 毫克/毫升)和 Hank's 平衡盐溶液(HBSS)的细胞在体外的生长动力学。15 只雄性兔子被分为 3 组。5 只兔子作为对照组,不进行任何治疗干预。5 只兔子被视为实验组 1,在骨缺损处接受 20 µL 含有 106 个 DPSCs 的细胞悬浮液。60 天后,对动物进行放射学和组织学评估:结果:DPSCs 的间充质特性得到了证实。经安赛蜜处理的 DPSCs 的群体倍增时间(PDT)(29.8 h)明显短于只暴露于 HBSS 的细胞(45.9 h)。DPSCs与acemannan一起使用可明显加速下颌骨缺损的愈合过程和成骨过程:由于 DPSCS 在使用乙酰甘露聚糖处理后增殖速度加快,并能加速下颌骨缺损的愈合过程,这些发现为牙科再生医学中针对骨缺损的治疗开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信