The Low Dimensional Homology of Projective Linear Group of Rank Two

Behrooz Mirzaii, Elvis Torres Pérez
{"title":"The Low Dimensional Homology of Projective Linear Group of Rank Two","authors":"Behrooz Mirzaii, Elvis Torres Pérez","doi":"arxiv-2405.08950","DOIUrl":null,"url":null,"abstract":"In this article we study the low dimensional homology of the projective\nlinear group $\\textrm{PGL}_2(A)$ over a $\\textrm{GE}_2$-ring $A$. In\nparticular, we prove a Bloch-Wigner type exact sequence over local domains. As\napplications we prove that\n$H_2(\\textrm{PGL}_2(A),\\mathbb{Z}\\left[\\frac{1}{2}\\right])\\simeq\nK_2(A)\\left[\\frac{1}{2}\\right]$ and\n$H_3(\\textrm{PGL}_2(A),\\mathbb{Z}\\left[\\frac{1}{2}\\right])\\simeq\nK_3^{\\textrm{ind}}(A)\\left[\\frac{1}{2}\\right]$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we study the low dimensional homology of the projective linear group $\textrm{PGL}_2(A)$ over a $\textrm{GE}_2$-ring $A$. In particular, we prove a Bloch-Wigner type exact sequence over local domains. As applications we prove that $H_2(\textrm{PGL}_2(A),\mathbb{Z}\left[\frac{1}{2}\right])\simeq K_2(A)\left[\frac{1}{2}\right]$ and $H_3(\textrm{PGL}_2(A),\mathbb{Z}\left[\frac{1}{2}\right])\simeq K_3^{\textrm{ind}}(A)\left[\frac{1}{2}\right]$.
二阶投影线性群的低维同源性
本文研究了$\textrm{GE}_2$环$A$上的投影线性群$\textrm{PGL}_2(A)$的低维同源性。特别是,我们证明了在局部域上的布洛赫-维格纳型精确序列。Asapplications we prove that$H_2(\textrm{PGL}_2(A),\mathbb{Z}\left[\frac{1}{2}\right])\simeqK_2(A)\left[\frac{1}{2}\right]$ and$H_3(\textrm{PGL}_2(A),\mathbb{Z}\left[\frac{1}{2}\right])\simeqK_3^{\textrm{ind}}(A)\left[\frac{1}{2}\right]$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信