Optimizing Task Scheduling in Heterogeneous Computing Environments: A Comparative Analysis of CPU, GPU, and ASIC Platforms Using E2C Simulator

Ali Mohammadjafari, Poorya Khajouie
{"title":"Optimizing Task Scheduling in Heterogeneous Computing Environments: A Comparative Analysis of CPU, GPU, and ASIC Platforms Using E2C Simulator","authors":"Ali Mohammadjafari, Poorya Khajouie","doi":"arxiv-2405.08187","DOIUrl":null,"url":null,"abstract":"Efficient task scheduling in heterogeneous computing environments is\nimperative for optimizing resource utilization and minimizing task completion\ntimes. In this study, we conducted a comprehensive benchmarking analysis to\nevaluate the performance of four scheduling algorithms First Come, First-Served\n(FCFS), FCFS with No Queuing (FCFS-NQ), Minimum Expected Completion Time\n(MECT), and Minimum Expected Execution Time (MEET) across varying workload\nscenarios. We defined three workload scenarios: low, medium, and high, each\nrepresenting different levels of computational demands. Through rigorous\nexperimentation and analysis, we assessed the effectiveness of each algorithm\nin terms of total completion percentage, energy consumption, wasted energy, and\nenergy per completion. Our findings highlight the strengths and limitations of\neach algorithm, with MECT and MEET emerging as robust contenders, dynamically\nprioritizing tasks based on comprehensive estimates of completion and execution\ntimes. Furthermore, MECT and MEET exhibit superior energy efficiency compared\nto FCFS and FCFS-NQ, underscoring their suitability for resource-constrained\nenvironments. This study provides valuable insights into the efficacy of task\nscheduling algorithms in heterogeneous computing environments, enabling\ninformed decision-making to enhance resource allocation, minimize task\ncompletion times, and improve energy efficiency","PeriodicalId":501333,"journal":{"name":"arXiv - CS - Operating Systems","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient task scheduling in heterogeneous computing environments is imperative for optimizing resource utilization and minimizing task completion times. In this study, we conducted a comprehensive benchmarking analysis to evaluate the performance of four scheduling algorithms First Come, First-Served (FCFS), FCFS with No Queuing (FCFS-NQ), Minimum Expected Completion Time (MECT), and Minimum Expected Execution Time (MEET) across varying workload scenarios. We defined three workload scenarios: low, medium, and high, each representing different levels of computational demands. Through rigorous experimentation and analysis, we assessed the effectiveness of each algorithm in terms of total completion percentage, energy consumption, wasted energy, and energy per completion. Our findings highlight the strengths and limitations of each algorithm, with MECT and MEET emerging as robust contenders, dynamically prioritizing tasks based on comprehensive estimates of completion and execution times. Furthermore, MECT and MEET exhibit superior energy efficiency compared to FCFS and FCFS-NQ, underscoring their suitability for resource-constrained environments. This study provides valuable insights into the efficacy of task scheduling algorithms in heterogeneous computing environments, enabling informed decision-making to enhance resource allocation, minimize task completion times, and improve energy efficiency
优化异构计算环境中的任务调度:使用 E2C 模拟器对 CPU、GPU 和 ASIC 平台进行比较分析
异构计算环境中的高效任务调度对于优化资源利用率和缩短任务完成时间至关重要。在本研究中,我们进行了全面的基准测试分析,以评估四种调度算法的性能:先到先得(FCFS)、无队列 FCFS(FCFS-NQ)、最小预期完成时间(MECT)和最小预期执行时间(MEET)在不同工作负载场景下的性能。我们定义了三种工作负载场景:低、中、高,分别代表不同级别的计算需求。通过严格的实验和分析,我们评估了每种算法在总完成百分比、能耗、浪费能源和每次完成能耗方面的有效性。我们的研究结果凸显了每种算法的优势和局限性,其中 MECT 和 MEET 根据对完成度和执行时间的综合估计,动态地对任务进行优先排序,成为强有力的竞争者。此外,与 FCFS 和 FCFS-NQ 相比,MECT 和 MEET 表现出更高的能效,这表明它们适用于资源受限的环境。这项研究为了解异构计算环境中任务调度算法的功效提供了宝贵的见解,有助于做出明智的决策,以加强资源分配,最大限度地缩短任务完成时间,提高能效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信