Restoring balance: principled under/oversampling of data for optimal classification

Emanuele Loffredo, Mauro Pastore, Simona Cocco, Rémi Monasson
{"title":"Restoring balance: principled under/oversampling of data for optimal classification","authors":"Emanuele Loffredo, Mauro Pastore, Simona Cocco, Rémi Monasson","doi":"arxiv-2405.09535","DOIUrl":null,"url":null,"abstract":"Class imbalance in real-world data poses a common bottleneck for machine\nlearning tasks, since achieving good generalization on under-represented\nexamples is often challenging. Mitigation strategies, such as under or\noversampling the data depending on their abundances, are routinely proposed and\ntested empirically, but how they should adapt to the data statistics remains\npoorly understood. In this work, we determine exact analytical expressions of\nthe generalization curves in the high-dimensional regime for linear classifiers\n(Support Vector Machines). We also provide a sharp prediction of the effects of\nunder/oversampling strategies depending on class imbalance, first and second\nmoments of the data, and the metrics of performance considered. We show that\nmixed strategies involving under and oversampling of data lead to performance\nimprovement. Through numerical experiments, we show the relevance of our\ntheoretical predictions on real datasets, on deeper architectures and with\nsampling strategies based on unsupervised probabilistic models.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.09535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Class imbalance in real-world data poses a common bottleneck for machine learning tasks, since achieving good generalization on under-represented examples is often challenging. Mitigation strategies, such as under or oversampling the data depending on their abundances, are routinely proposed and tested empirically, but how they should adapt to the data statistics remains poorly understood. In this work, we determine exact analytical expressions of the generalization curves in the high-dimensional regime for linear classifiers (Support Vector Machines). We also provide a sharp prediction of the effects of under/oversampling strategies depending on class imbalance, first and second moments of the data, and the metrics of performance considered. We show that mixed strategies involving under and oversampling of data lead to performance improvement. Through numerical experiments, we show the relevance of our theoretical predictions on real datasets, on deeper architectures and with sampling strategies based on unsupervised probabilistic models.
恢复平衡:原则性数据取样不足/取样过多,实现最佳分类
现实世界数据中的类不平衡是机器学习任务的一个常见瓶颈,因为在代表性不足的样本上实现良好的泛化往往具有挑战性。缓解策略,如根据数据的丰度对数据进行低采样或高采样,已被例行提出并进行了实证测试,但人们对这些策略应如何适应数据统计仍知之甚少。在这项工作中,我们确定了线性分类器(支持向量机)的高维泛化曲线的精确分析表达式。我们还根据类的不平衡性、数据的第一和第二矩以及所考虑的性能指标,对欠采样/过采样策略的效果进行了精确预测。我们表明,涉及数据低采样和高采样的混合策略会提高性能。通过数值实验,我们证明了我们的理论预测在真实数据集、更深入的架构和基于无监督概率模型的采样策略上的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信