Classification of radial blow-up at the first critical exponent for the Lin–Ni–Takagi problem in the ball

IF 1.3 2区 数学 Q1 MATHEMATICS
Denis Bonheure, Jean-Baptiste Casteras, Bruno Premoselli
{"title":"Classification of radial blow-up at the first critical exponent for the Lin–Ni–Takagi problem in the ball","authors":"Denis Bonheure, Jean-Baptiste Casteras, Bruno Premoselli","doi":"10.1007/s00208-024-02888-8","DOIUrl":null,"url":null,"abstract":"<p>We investigate the behaviour of radial solutions to the Lin–Ni–Takagi problem in the ball <span>\\(B_R \\subset \\mathbb {R}^N\\)</span> for <span>\\(N \\ge 3\\)</span>: </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} - \\triangle u_p + u_p = |u_p|^{p-2}u_p &amp;{}\\quad \\text { in } B_R, \\\\ \\partial _\\nu u_p = 0 &amp;{}\\quad \\text { on } \\partial B_R, \\end{array} \\right. \\end{aligned}$$</span><p>when <i>p</i> is close to the first critical Sobolev exponent <span>\\(2^* = \\frac{2N}{N-2}\\)</span>. We obtain a complete classification of finite energy radial smooth blowing up solutions to this problem. We describe the conditions preventing blow-up as <span>\\(p \\rightarrow 2^*\\)</span>, we give the necessary conditions in order for blow-up to occur and we establish their sharpness by constructing examples of blowing up sequences. Our approach allows for asymptotically supercritical values of <i>p</i>. We show in particular that, if <span>\\(p \\ge 2^*\\)</span>, finite-energy radial solutions are precompact in <span>\\(C^2(\\overline{B_R})\\)</span> provided that <span>\\(N\\ge 7\\)</span>. Sufficient conditions are also given in smaller dimensions if <span>\\(p=2^*\\)</span>. Finally we compare and interpret our results in light of the bifurcation analysis of Bonheure, Grumiau and Troestler in (Nonlinear Anal 147:236–273, 2016).</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"9 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02888-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the behaviour of radial solutions to the Lin–Ni–Takagi problem in the ball \(B_R \subset \mathbb {R}^N\) for \(N \ge 3\):

$$\begin{aligned} \left\{ \begin{array}{ll} - \triangle u_p + u_p = |u_p|^{p-2}u_p &{}\quad \text { in } B_R, \\ \partial _\nu u_p = 0 &{}\quad \text { on } \partial B_R, \end{array} \right. \end{aligned}$$

when p is close to the first critical Sobolev exponent \(2^* = \frac{2N}{N-2}\). We obtain a complete classification of finite energy radial smooth blowing up solutions to this problem. We describe the conditions preventing blow-up as \(p \rightarrow 2^*\), we give the necessary conditions in order for blow-up to occur and we establish their sharpness by constructing examples of blowing up sequences. Our approach allows for asymptotically supercritical values of p. We show in particular that, if \(p \ge 2^*\), finite-energy radial solutions are precompact in \(C^2(\overline{B_R})\) provided that \(N\ge 7\). Sufficient conditions are also given in smaller dimensions if \(p=2^*\). Finally we compare and interpret our results in light of the bifurcation analysis of Bonheure, Grumiau and Troestler in (Nonlinear Anal 147:236–273, 2016).

Abstract Image

球内林-尼-高木问题在第一个临界指数处的径向膨胀分类
我们研究了在球 \(B_R \subset \mathbb {R}^N\) 中 \(N \ge 3\) 的 Lin-Ni-Takagi 问题的径向解的行为:$$\begin{aligned}\三角形 u_p + u_p = |u_|^{p-2}u_p &{}\quad \text { in }B_R, \partial _\nu u_p = 0 &{}\quad\text { on }\B_R, end{array}\right。\end{aligned}$$当 p 接近第一个临界索波列夫指数时(2^* = \frac{2N}{N-2}\)。我们得到了这个问题的有限能量径向光滑炸裂解的完整分类。我们将防止爆炸的条件描述为 \(p \rightarrow 2^**\),我们给出了爆炸发生的必要条件,并通过构造爆炸序列的例子确定了它们的尖锐性。我们的方法允许p的渐近超临界值。我们特别表明,如果\(p\ge 2^*\),只要\(N\ge 7\), 有限能量径向解在\(C^2(\overline{B_R})\)中是前紧凑的。如果(p=2^*),在更小的维度上也给出了充分条件。最后,我们将根据 Bonheure、Grumiau 和 Troestler 在(Nonlinear Anal 147:236-273, 2016)中的分岔分析来比较和解释我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信