{"title":"Stochastic Optimal Transport with at Most Quadratic Growth Cost","authors":"Toshio Mikami","doi":"10.1007/s00245-024-10141-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a class of stochastic optimal transport, SOT for short, with given two endpoint marginals in the case where a cost function exhibits at most quadratic growth. We first study the upper and lower estimates, the short-time asymptotics, the zero-noise limits, and the explosion rate as time goes to infinity of SOT. We also show that the value function of SOT is equal to zero or infinity in the case where a cost function exhibits less than linear growth. As a by-product, we characterize the finiteness of the value function of SOT by that of the Monge–Kantorovich problem. As an application, we show the existence of a continuous semimartingale, with given initial and terminal distributions, of which the drift vector is <i>r</i>th integrable for <span>\\(r\\in [1,2)\\)</span>. We also consider the same problem for Schrödinger’s problem where <span>\\(r=2\\)</span>. This paper is a continuation of our previous work.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10141-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a class of stochastic optimal transport, SOT for short, with given two endpoint marginals in the case where a cost function exhibits at most quadratic growth. We first study the upper and lower estimates, the short-time asymptotics, the zero-noise limits, and the explosion rate as time goes to infinity of SOT. We also show that the value function of SOT is equal to zero or infinity in the case where a cost function exhibits less than linear growth. As a by-product, we characterize the finiteness of the value function of SOT by that of the Monge–Kantorovich problem. As an application, we show the existence of a continuous semimartingale, with given initial and terminal distributions, of which the drift vector is rth integrable for \(r\in [1,2)\). We also consider the same problem for Schrödinger’s problem where \(r=2\). This paper is a continuation of our previous work.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.